Cargando…

An introduction to the classification of amenable C*-algebras /

The theory and applications of C*-algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C*-algebras is also regarded as non-commutative topology. About a de...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lin, Huaxin, 1956-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn269283239
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081106s2001 si ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d NLGGC  |d EBLCP  |d DEBSZ  |d OCLCQ  |d YDXCP  |d STF  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d VTS  |d NRAMU  |d CRU  |d ICG  |d OCLCQ  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d JBG  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ 
019 |a 505147600  |a 646768445  |a 764500006  |a 815754663  |a 961533491  |a 962630646  |a 1058116100 
020 |a 9789812799883  |q (electronic bk.) 
020 |a 9812799885  |q (electronic bk.) 
020 |a 1281951439 
020 |a 9781281951434 
020 |z 9789810246808 
020 |z 9810246803 
029 1 |a AU@  |b 000049163324 
029 1 |a AU@  |b 000051374416 
029 1 |a DEBBG  |b BV043093059 
029 1 |a DEBBG  |b BV044179473 
029 1 |a DEBSZ  |b 405248164 
029 1 |a DEBSZ  |b 422098027 
029 1 |a GBVCP  |b 802707963 
029 1 |a NZ1  |b 13858025 
035 |a (OCoLC)269283239  |z (OCoLC)505147600  |z (OCoLC)646768445  |z (OCoLC)764500006  |z (OCoLC)815754663  |z (OCoLC)961533491  |z (OCoLC)962630646  |z (OCoLC)1058116100 
050 4 |a QA326  |b .L563 2001eb 
072 7 |a MAT  |x 002050  |2 bisacsh 
072 7 |a PBF  |2 bicssc 
082 0 4 |a 512/.55  |2 22 
049 |a UAMI 
100 1 |a Lin, Huaxin,  |d 1956- 
245 1 3 |a An introduction to the classification of amenable C*-algebras /  |c Huaxin Lin. 
246 3 0 |a Amenable C*-algebras 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xi, 320 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 307-316) and index. 
588 0 |a Print version record. 
520 |a The theory and applications of C*-algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C*-algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C*-algebras (up to isomorphism) by their K-theoretical data. It started with the classification of AT-algebras with real rank zero. Since then great efforts have been made to classify amenable C*-algebras, a class of C*-algebras that arises most naturally. For example, a large class of simple amenable C*-algebras is discovered to be classifiable. The application of these results to dynamical systems has been established. This book introduces the recent development of the theory of the classification of amenable C*-algebras - the first such attempt. The first three chapters present the basics of the theory of C*-algebras which are particularly important to the theory of the classification of amenable C*-algebras. Chapter 4 offers the classification of the so-called AT-algebras of real rank zero. The first four chapters are self-contained, and can serve as a text for a graduate course on C*-algebras. The last two chapters contain more advanced material. In particular, they deal with the classification theorem for simple AH-algebras with real rank zero, the work of Elliott and Gong. The book contains many new proofs and some original results related to the classification of amenable C*-algebras. As well as providing an introduction to the theory of the classification of amenable C*-algebras, it is a comprehensive reference for those more familiar with the subject. 
505 0 |a Ch. 1. The Basics of C*-algebras. 1.1. Banach algebras. 1.2. C*-algebras. 1.3. Commutative C*-algebras. 1.4. Positive cones. 1.5. Approximate identities, hereditary C*-subalgebras and quotients. 1.6. Positive linear functionals and a Gelfand-Naimark theorem. 1.7. Von Neumann algebras. 1.8. Enveloping von Neumann algebras and the spectral theorem. 1.9. Examples of C*-algebras. 1.10. Inductive limits of C*-algebras. 1.11. Exercises. 1.12. Addenda -- ch. 2. Amenable C*-algebras and K-theory. 2.1. Completely positive linear maps and the Stinespring representation. 2.2. Examples of completely positive linear maps. 2.3. Amenable C*-algebras. 2.4. K-theory. 2.5. Perturbations. 2.6. Examples of K-groups. 2.7. K-theory of inductive limits of C*-algebras. 2.8. Exercises. 2.9. Addenda -- ch. 3. AF-algebras and ranks of C*-algebras. 3.1. C*-algebras of stable rank one and their K-theory. 3.2. C*-algebras of lower rank. 3.3. Order structure of K-theory. 3.4. AF-algebras. 3.5. Simple C*-algebras. 3.6. Tracial topological rank. 3.7. Simple C*-algebras with TR(A) [symbol] 1. 3.8. Exercises. 3.9. Addenda -- ch. 4. Classification of simple AT-algebras. 4.1. Some basics about AT-algebras. 4.2. Unitary groups of C*-algebras with real rank zero. 4.3. Simple AT-algebras with real rank zero. 4.4. Unitaries in simple C*-algebra with RR(A) = 0. 4.5. A uniqueness theorem. 4.6. Classification of simple AT-algebras. 4.7. Invariants of simple AT-algebras. 4.8. Exercises. 4.9. Addenda -- ch. 5. C*-algebra extensions. 5.1. Multiplier algebras. 5.2. Extensions of C*-algebras. 5.3. Completely positive maps to Mn(C). 5.4. Amenable completely positive maps. 5.5. Absorbing extensions. 5.6. A stable uniqueness theorem. 5.7. K-theory and the universal coefficient theorem. 5.8. Characterization of KK-theory and a universal multi-coefficient theorem. 5.9. Approximately trivial extensions. 5.10. Exercises -- ch. 6. Classification of simple amenable C*-algebras. 6.1. An existence theorem. 6.2. Simple AH-algebras. 6.3. The classification theorems. 6.4. Invariants and some isomorphism theorems. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a C*-algebras. 
650 0 |a K-theory. 
650 6 |a C*-algèbres. 
650 6 |a K-théorie. 
650 7 |a MATHEMATICS  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a C*-algebras.  |2 fast  |0 (OCoLC)fst00843285 
650 7 |a K-theory.  |2 fast  |0 (OCoLC)fst00985541 
650 1 7 |a C*-algebra's.  |2 gtt 
650 7 |a Análise funcional.  |2 larpcal 
650 7 |a C* álgebras.  |2 larpcal 
776 0 8 |i Print version:  |a Lin, Huaxin, 1956-  |t Introduction to the classification of amenable C*-algebras.  |d Singapore ; River Edge, NJ : World Scientific, ©2001  |z 9810246803  |z 9789810246808  |w (DLC) 2002282557  |w (OCoLC)49195508 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235800  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685500 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681500 
938 |a ebrary  |b EBRY  |n ebr10255598 
938 |a EBSCOhost  |b EBSC  |n 235800 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 195143 
938 |a YBP Library Services  |b YANK  |n 2915185 
994 |a 92  |b IZTAP