Cargando…

Quantum invariants : a study of knots, 3-manifolds, and their sets /

This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum grou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ohtsuki, Tomotada
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2002.
Colección:K & E series on knots and everything ; v. 29.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn269032377
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081105s2002 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d OCLCO  |d YDXCP  |d OCLCQ  |d S3O  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d KNM  |d AU@  |d M8D  |d LEAUB  |d UKCRE  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 505144457  |a 646769018  |a 764502785  |a 961530185  |a 962725770  |a 968287356  |a 988406468  |a 992024658  |a 1037709126  |a 1038696533  |a 1045487917  |a 1055392324  |a 1064784845  |a 1081239065  |a 1082415912  |a 1086532387  |a 1153515044  |a 1228613837  |a 1240527171  |a 1249222409 
020 |a 9789812811172  |q (electronic bk.) 
020 |a 9812811176  |q (electronic bk.) 
020 |z 9789810246754 
020 |z 9810246757 
029 1 |a AU@  |b 000049163328 
029 1 |a AU@  |b 000051406019 
029 1 |a DEBBG  |b BV043136728 
029 1 |a DEBSZ  |b 422097985 
029 1 |a GBVCP  |b 802707912 
029 1 |a NZ1  |b 13858249 
035 |a (OCoLC)269032377  |z (OCoLC)505144457  |z (OCoLC)646769018  |z (OCoLC)764502785  |z (OCoLC)961530185  |z (OCoLC)962725770  |z (OCoLC)968287356  |z (OCoLC)988406468  |z (OCoLC)992024658  |z (OCoLC)1037709126  |z (OCoLC)1038696533  |z (OCoLC)1045487917  |z (OCoLC)1055392324  |z (OCoLC)1064784845  |z (OCoLC)1081239065  |z (OCoLC)1082415912  |z (OCoLC)1086532387  |z (OCoLC)1153515044  |z (OCoLC)1228613837  |z (OCoLC)1240527171  |z (OCoLC)1249222409 
050 4 |a QC174.52.C66  |b O35 2002eb 
072 7 |a SCI  |x 067000  |2 bisacsh 
082 0 4 |a 530.14/3  |2 22 
049 |a UAMI 
100 1 |a Ohtsuki, Tomotada. 
245 1 0 |a Quantum invariants :  |b a study of knots, 3-manifolds, and their sets /  |c Tomotada Ohtsuki. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2002. 
300 |a 1 online resource (xiii, 489 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a K & E series on knots and everything ;  |v v. 29 
504 |a Includes bibliographical references (pages 463-481) and index. 
588 0 |a Print version record. 
505 0 |a Ch. 1. Knots and polynomial invariants. 1.1. Knots and their diagrams. 1.2. The Jones polynomial. 1.3. The Alexander polynomial -- ch. 2. Braids and representations of the braid groups. 2.1. Braids and braid groups. 2.2. Representations of the braid groups via R matrices. 2.3. Burau representation of the braid groups -- ch. 3. Operator invariants of tangles via sliced diagrams. 3.1. Tangles and their sliced diagrams. 3.2. Operator invariants of unoriented tangles. 3.3. Operator invariants of oriented tangles -- ch. 4. Ribbon Hopf algebras and invariants of links. 4.1. Ribbon Hopf algebras. 4.2. Invariants of links in ribbon Hopf algebras. 4.3. Operator invariants of tangles derived from ribbon Hopf algebras. 4.4. The quantum group U[symbol] at a generic q. 4.5. The quantum group U[symbol] at a root of unity [symbol] -- ch. 5. Monodromy representations of the braid groups derived from the Knizhnik-Zamolodchikov equation. 5.1. Representations of braid groups derived from the KZ equation. 5.2. Computing monodromies of the KZ equation. 5.3. Combinatorial reconstruction of the monodromy representations. 5.4. Quasi-triangular quasi-bialgebra. 5.5. Relation to braid representations derived from the quantum group -- ch. 6. The Kontsevich invariant. 6.1. Jacobi diagrams. 6.2. The Kontsevich invariant derived from the formal KZ equation. 6.3. Quasi-tangles and their sliced diagrams. 6.4. Combinatorial definition of the framed Kontsevich invariant. 6.5. Properties of the framed Kontsevich invariant. 6.6. Universality of the Kontsevich invariant among quantum invariants -- ch. 7. Vassiliev invariants. 7.1. Definition and fundamental properties of Vassiliev invariants. 7.2. Universality of the Kontsevich invariant among Vassiliev invariants. 7.3. A descending series of equivalence relations among knots. 7.4. Extending the set of knots by Gauss diagrams. 7.5. Vassiliev invariants as mapping degrees on configuration spaces -- ch. 8. Quantum invariants of 3-manifolds. 8.1. 3-manifolds and their surgery presentations. 8.2. The quantum SU(2) and SO(3) invariants via linear skein. 8.3. Quantum invariants of 3-manifolds via quantum invariants of links -- ch. 9. Perturbative invariants of knots and 3-manifolds. 9.1. Perturbative invariants of knots. 9.2. Perturbative invariants of homology 3-spheres. 9.3. A relation between perturbative invariants of knots and homology 3- spheres -- ch. 10. The LMO invariant. 10.1. Properties of the framed Kontsevich invariant. 10.2. Definition of the LMO invariant. 10.3. Universality of the LMO invariant among perturbative invariants. 10.4. Aarhus integral -- ch. 11. Finite type invariants of integral homology 3-spheres. 11.1. Definition of finite type invariants. 11.2. Universality of the LMO invariant among finite type invariants. 11.3. A descending series of equivalence relations among homology 3-spheres. 
520 |a This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The Chern-Simons field theory and the Wess-Zumino-Witten model are described as the physical background of the invariants. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Quantum field theory. 
650 0 |a Knot theory. 
650 0 |a Three-manifolds (Topology) 
650 0 |a Invariants. 
650 0 |a Mathematical physics. 
650 6 |a Théorie quantique des champs. 
650 6 |a Théorie des nœuds. 
650 6 |a Variétés topologiques à 3 dimensions. 
650 6 |a Invariants. 
650 6 |a Physique mathématique. 
650 7 |a SCIENCE  |x Waves & Wave Mechanics.  |2 bisacsh 
650 7 |a Invariants  |2 fast 
650 7 |a Knot theory  |2 fast 
650 7 |a Mathematical physics  |2 fast 
650 7 |a Quantum field theory  |2 fast 
650 7 |a Three-manifolds (Topology)  |2 fast 
650 7 |a Teoria dos nós.  |2 larpcal 
650 7 |a Topologia algébrica.  |2 larpcal 
650 7 |a Variedades topologicas de dimensão 3.  |2 larpcal 
650 7 |a Mångfalder.  |2 sao 
776 0 8 |i Print version:  |a Ohtsuki, Tomotada.  |t Quantum invariants.  |d Singapore ; River Edge, NJ : World Scientific, ©2002  |z 9810246757  |z 9789810246754  |w (DLC) 2002277423  |w (OCoLC)49195502 
830 0 |a K & E series on knots and everything ;  |v v. 29. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235804  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10255974 
938 |a EBSCOhost  |b EBSC  |n 235804 
938 |a YBP Library Services  |b YANK  |n 2915260 
994 |a 92  |b IZTAP