Cargando…

Introduction to [lambda]-trees /

"The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller spa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chiswell, Ian, 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, N.J. : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn268962256
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081105s2001 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d YDXCP  |d STF  |d OCLCQ  |d LOA  |d JBG  |d AGLDB  |d COCUF  |d MOR  |d PIFAG  |d OCLCQ  |d COO  |d WRM  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d WYU  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d UKCRE  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 505144398  |a 646768885  |a 764502146  |a 815755921  |a 961534060  |a 962630842  |a 968301162  |a 988484441  |a 991925554  |a 1037795394  |a 1038599312  |a 1045482839  |a 1055380919  |a 1062913417  |a 1081219020  |a 1086416695  |a 1153493918 
020 |a 9789812810533  |q (electronic bk.) 
020 |a 9812810536  |q (electronic bk.) 
020 |a 128195621X 
020 |a 9781281956217 
020 |z 9789810243869 
020 |z 9810243863 
029 1 |a AU@  |b 000049163195 
029 1 |a AU@  |b 000051374318 
029 1 |a DEBBG  |b BV043066694 
029 1 |a DEBSZ  |b 422097020 
029 1 |a GBVCP  |b 802707211 
029 1 |a NZ1  |b 13858194 
035 |a (OCoLC)268962256  |z (OCoLC)505144398  |z (OCoLC)646768885  |z (OCoLC)764502146  |z (OCoLC)815755921  |z (OCoLC)961534060  |z (OCoLC)962630842  |z (OCoLC)968301162  |z (OCoLC)988484441  |z (OCoLC)991925554  |z (OCoLC)1037795394  |z (OCoLC)1038599312  |z (OCoLC)1045482839  |z (OCoLC)1055380919  |z (OCoLC)1062913417  |z (OCoLC)1081219020  |z (OCoLC)1086416695  |z (OCoLC)1153493918 
050 4 |a QA166.2  |b .C47 2001eb 
072 7 |a MAT  |x 013000  |2 bisacsh 
072 7 |a PBG  |2 bicssc 
082 0 4 |a 511/.52  |2 22 
049 |a UAMI 
100 1 |a Chiswell, Ian,  |d 1948- 
245 1 0 |a Introduction to [lambda]-trees /  |c Ian Chiswell. 
260 |a Singapore ;  |a River Edge, N.J. :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (x, 315 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 297-305) and index. 
588 0 |a Print version record. 
505 0 |a Ch. 1. Preliminaries. 1. Ordered abelian groups. 2. Metric spaces. 3. Graphs and simplicial trees. 4. Valuations -- ch. 2. [lambda]-trees and their construction. 1. Definition and elementary properties. 2. Special properties of R-trees. 3. Linear subtrees and ends. 4. Lyndon length functions -- ch. 3. Isometries of [lambda]-trees. 1. Theory of a single isometry. 2. Group actions as isometries. 3. Pairs of isometries. 4. Minimal actions -- ch. 4. Aspects of group actions on [lambda]-trees. 1. Introduction. 2. Actions of special classes of groups. 3. The action of the special linear group. 4. Measured laminations. 5. Hyperbolic surfaces. 6. Spaces of actions on R-trees -- ch. 5. Free actions. 1. Introduction. 2. Harrison's theorem. 3. Some examples. 4. Free actions of surface groups. 5. Non-standard free groups -- ch. 6. Rips' theorem. 1. Systems of isometries. 2. Minimal components. 3. Independent generators. 4. Interval exchanges and conclusion. 
520 |a "The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R-trees. In that work they were led to define the idea of a [lambda]-tree, where [lambda] is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R-trees, notably Rips' theorem on free actions. There has also been some progress for certain other ordered abelian groups [lambda], including some interesting connections with model theory. Introduction to [lambda]-Trees will prove to be useful for mathematicians and research students in algebra and topology." 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Lambda algebra. 
650 0 |a Trees (Graph theory) 
650 0 |a Group theory. 
650 6 |a Lambda-algèbre. 
650 6 |a Arbres (Théorie des graphes) 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS  |x Graphic Methods.  |2 bisacsh 
650 7 |a Group theory  |2 fast 
650 7 |a Lambda algebra  |2 fast 
650 7 |a Trees (Graph theory)  |2 fast 
650 7 |a Teoria dos grupos.  |2 larpcal 
650 7 |a Teoria dos modelos.  |2 larpcal 
650 7 |a Lógica matemática.  |2 larpcal 
650 7 |a Árvores.  |2 larpcal 
776 0 8 |i Print version:  |a Chiswell, Ian, 1948-  |t Introduction to [lambda]-trees.  |d Singapore ; River Edge, N.J. : World Scientific, ©2001  |z 9810243863  |z 9789810243869  |w (DLC) 2001281032  |w (OCoLC)47032651 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235901  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685555 
938 |a ebrary  |b EBRY  |n ebr10255889 
938 |a EBSCOhost  |b EBSC  |n 235901 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 195621 
938 |a YBP Library Services  |b YANK  |n 2915222 
994 |a 92  |b IZTAP