Introduction to [lambda]-trees /
"The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller spa...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; River Edge, N.J. :
World Scientific,
©2001.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | "The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R-trees. In that work they were led to define the idea of a [lambda]-tree, where [lambda] is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R-trees, notably Rips' theorem on free actions. There has also been some progress for certain other ordered abelian groups [lambda], including some interesting connections with model theory. Introduction to [lambda]-Trees will prove to be useful for mathematicians and research students in algebra and topology." |
---|---|
Descripción Física: | 1 online resource (x, 315 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 297-305) and index. |
ISBN: | 9789812810533 9812810536 128195621X 9781281956217 |