Cargando…

The Casimir effect : physical manifestations of zero-point energy /

In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction - which may be either attractive or repulsive - between material bodies due to quantum fluctuations in whatever fields are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Milton, K. A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Ch. 1. Introduction to the Casimir effect. 1.1. Van der Waals forces. 1.2. Casimir effect. 1.3. Dimensional dependence. 1.4. Applications. 1.5. Local effects. 1.6. Sonoluminescence. 1.7. Radiative corrections. 1.8. Other topics. 1.9. Conclusion. 1.10. General references
  • ch. 2. Casimir force between parallel plates. 2.1. Introduction. 2.2. Dimensional regularization. 2.3. Scalar Green's function. 2.4. Massive scalar. 2.5. Finite temperature. 2.6. Electromagnetic Casimir force. 2.7. Fermionic Casimir force
  • ch. 3. Casimir force between parallel dielectrics. 3.1. The Lifshitz theory. 3.2. Applications. 3.3. Experimental verification of the Casimir effect
  • ch. 4. Casimir effect with perfect spherical boundaries. 4.1. Electromagnetic Casimir self-stress on a spherical shell. 4.2. Fermion fluctuations
  • ch. 5. The Casimir effect of a dielectric ball: the equivalence of the Casimir effect and van der Waals forces. 5.1. Green's dyadic formulation. 5.2. Stress on the sphere. 5.3. Total energy. 5.4. Fresnel drag. 5.5. Electrostriction. 5.6. Dilute dielectric-diamagnetic sphere. 5.7. Dilute dielectric ball. 5.8. Conducting ball. 5.9. Van der Waals self-stress for a dilute dielectric sphere. 5.10. Discussion
  • ch. 6. Application to hadronic physics: zero-point energy in the bag model. 6.1. Zero-point energy of confined gluons. 6.2. Zero-point energy of confined virtual quarks. 6.3. Discussion and applications. 6.4. Calculation of the bag constant. 6.5. Recent work
  • ch. 7. Casimir effect in cylindrical geometries. 7.1. Conducting circular cylinder. 7.2. Dielectric-diamagnetic cylinder
  • uniform speed of light. 7.3. Van der Waals energy of a dielectric cylinder
  • ch. 8. Casimir effect in two dimensions: the Maxwell-Chern-Simons Casimir effect. 8.1. Introduction. 8.2. Casimir effect in 2 + 1 dimensions. 8.3. Circular boundary conditions. 8.4. Scalar Casimir effect on a circle
  • ch. 9. Casimir effect on a D-dimensional sphere. 9.1. Scalar or TE modes. 9.2. TM modes. 9.3. Toward a finite D = 2 Casimir effect
  • ch. 10. Cosmological implications of the Casimir effect. 10.1. Scalar Casimir energies in M[symbol] x S[symbol]. 10.2. Discussion. 10.3. The cosmological constant
  • ch. 11. Local effects. 11.1. Parallel plates. 11.2. Local Casimir effect for wedge geometry. 11.3. Other work. 11.4. Quark and gluon condensates in the bag model. 11.5. Surface divergences
  • ch. 12. Sonoluminescence and the dynamical Casimir effect. 12.1. Introduction. 12.2. The adiabatic approximation. 12.3. Discussion of form of force on surface. 12.4. Bulk energy. 12.5. Dynamical Casimir effect
  • ch. 13. Radiative corrections to the Casimir effect. 13.1. Formalism for computing radiative corrections. 13.2. Radiative corrections for parallel conducting plates. 13.3. Radiative corrections for a spherical boundary. 13.4. Conclusions
  • ch. 14. Conclusions and outlook.