|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn268958906 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
081105s2001 si a ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d UBY
|d IDEBK
|d E7B
|d OCLCQ
|d OCLCF
|d OCLCQ
|d NLGGC
|d OCLCO
|d YDXCP
|d STF
|d MHW
|d EBLCP
|d DEBSZ
|d OCLCQ
|d AZK
|d LOA
|d JBG
|d AGLDB
|d COCUF
|d MOR
|d PIFAG
|d ZCU
|d MERUC
|d OCLCQ
|d COO
|d U3W
|d WRM
|d VTS
|d NRAMU
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d OCLCQ
|d DKC
|d AU@
|d OCLCQ
|d M8D
|d UKAHL
|d OCLCQ
|d K6U
|d UKCRE
|d VLY
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 505144389
|a 646768865
|a 764502027
|a 879023764
|a 961627033
|a 962691494
|a 968284091
|a 988427033
|a 992076683
|a 1037709737
|a 1038573630
|a 1045511730
|a 1055317243
|a 1064908005
|a 1081225167
|a 1086441945
|a 1153523123
|a 1162019652
|a 1228548106
|a 1240511250
|a 1241772347
|a 1272920223
|a 1290047372
|a 1300475764
|
020 |
|
|
|a 9789812810465
|q (electronic bk.)
|
020 |
|
|
|a 9812810463
|q (electronic bk.)
|
020 |
|
|
|a 1281956163
|
020 |
|
|
|a 9781281956163
|
020 |
|
|
|a 9786611956165
|
020 |
|
|
|a 6611956166
|
020 |
|
|
|z 9789810244439
|
020 |
|
|
|z 9810244436
|
029 |
1 |
|
|a AU@
|b 000049162865
|
029 |
1 |
|
|a AU@
|b 000051366037
|
029 |
1 |
|
|a DEBBG
|b BV043151294
|
029 |
1 |
|
|a DEBBG
|b BV044178951
|
029 |
1 |
|
|a DEBSZ
|b 405245106
|
029 |
1 |
|
|a DEBSZ
|b 422097101
|
029 |
1 |
|
|a NZ1
|b 13858184
|
035 |
|
|
|a (OCoLC)268958906
|z (OCoLC)505144389
|z (OCoLC)646768865
|z (OCoLC)764502027
|z (OCoLC)879023764
|z (OCoLC)961627033
|z (OCoLC)962691494
|z (OCoLC)968284091
|z (OCoLC)988427033
|z (OCoLC)992076683
|z (OCoLC)1037709737
|z (OCoLC)1038573630
|z (OCoLC)1045511730
|z (OCoLC)1055317243
|z (OCoLC)1064908005
|z (OCoLC)1081225167
|z (OCoLC)1086441945
|z (OCoLC)1153523123
|z (OCoLC)1162019652
|z (OCoLC)1228548106
|z (OCoLC)1240511250
|z (OCoLC)1241772347
|z (OCoLC)1272920223
|z (OCoLC)1290047372
|z (OCoLC)1300475764
|
050 |
|
4 |
|a QA612.2
|b .Y47 2001eb
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.224
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Yetter, David N.
|
245 |
1 |
0 |
|a Functorial knot theory :
|b categories of tangles, coherence, categorical deformations, and topological invariants /
|c David N. Yetter.
|
246 |
3 |
0 |
|a Categories of tangles, coherence, categorical deformations, and topological invariants
|
260 |
|
|
|a Singapore ;
|a River Edge, NJ :
|b World Scientific,
|c ©2001.
|
300 |
|
|
|a 1 online resource (230 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a K & E series on knots and everything ;
|v v. 26
|
504 |
|
|
|a Includes bibliographical references (pages 219-224) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a 1. Introduction -- I. Knots and categories. 2. Basic concepts. 2.1. Knots. 2.2. Categories -- 3. Monoidal categories, functors and natural transformations -- 4. A digression on algebras -- 5. More about monoidal categories -- 6. Knot polynomials -- 7. Categories of tangles -- 8. Smooth tangles and PL tangles -- 9. Shum's theorem -- 10. A little enriched category theory -- II. Deformations. 11. Introduction -- 12. Definitions -- 13. Deformation complexes of semigroupal categories and functors -- 14. Some useful cochain maps -- 15. First order deformations -- 16. Obstructions and cup product and pre-Lie structures on X[symbol](F) -- 17. Units -- 18. Extrinsic deformations of monoidal categories -- 19. Vassiliev invariants, framed and unframed -- 20. Vassiliev theory in characteristic 2 -- 21. Categorical deformations as proper generalizations of classical notions -- 22. Open questions. 22.1. Functorial knot theory. 22.2. Deformation theory.
|
520 |
|
|
|a Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory. This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Knot theory.
|
650 |
|
0 |
|a Categories (Mathematics)
|
650 |
|
0 |
|a Functor theory.
|
650 |
|
6 |
|a Théorie des nœuds.
|
650 |
|
6 |
|a Catégories (Mathématiques)
|
650 |
|
6 |
|a Théorie des foncteurs.
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a Categories (Mathematics)
|2 fast
|
650 |
|
7 |
|a Functor theory
|2 fast
|
650 |
|
7 |
|a Knot theory
|2 fast
|
650 |
1 |
7 |
|a Knopentheorie.
|2 gtt
|
650 |
|
7 |
|a Topologia.
|2 larpcal
|
776 |
0 |
8 |
|i Print version:
|a Yetter, David N.
|t Functorial knot theory.
|d Singapore ; River Edge, NJ : World Scientific, ©2001
|z 9810244436
|z 9789810244439
|w (DLC) 2001273934
|w (OCoLC)47684546
|
830 |
|
0 |
|a K & E series on knots and everything ;
|v v. 26.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235892
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24685550
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1679562
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10255874
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 235892
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2915217
|
994 |
|
|
|a 92
|b IZTAP
|