Cargando…

Mathematical problems of control theory : an introduction /

This work shows clearly how the study of concrete control systems has motivated the development of the mathematical tools needed for solving such problems. In many cases, by using this apparatus, far-reaching generalizations have been made, and its further development will have an important effect o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Leonov, G. A. (Gennadiĭ Alekseevich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2001.
Colección:Series on stability, vibration, and control of systems. v. 6.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn268796828
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081104s2001 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d OCLCA  |d IDEBK  |d OCLCQ  |d OCLCF  |d NLGGC  |d OCLCO  |d EBLCP  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d COCUF  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d OCLCQ  |d VTS  |d AGLDB  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d HS0  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 815754656 
020 |a 9789812799852  |q (electronic bk.) 
020 |a 9812799850  |q (electronic bk.) 
020 |a 1281951404 
020 |a 9781281951403 
029 1 |a AU@  |b 000049162631 
029 1 |a AU@  |b 000058360479 
029 1 |a AU@  |b 000060059391 
029 1 |a DEBBG  |b BV043150991 
029 1 |a DEBBG  |b BV044178981 
029 1 |a DEBSZ  |b 405245297 
029 1 |a DEBSZ  |b 42209806X 
029 1 |a GBVCP  |b 802706983 
035 |a (OCoLC)268796828  |z (OCoLC)815754656 
050 4 |a QA402.3  |b .L4816 2001eb 
072 7 |a COM  |x 017000  |2 bisacsh 
072 7 |a PBW  |2 bicssc 
082 0 4 |a 003/.5  |2 22 
049 |a UAMI 
100 1 |a Leonov, G. A.  |q (Gennadiĭ Alekseevich) 
245 1 0 |a Mathematical problems of control theory :  |b an introduction /  |c Gennady A. Leonov. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (viii, 172 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on stability, vibration, and control of systems. Series A ;  |v v. 6 
504 |a Includes bibliographical references (pages 167-169) and index. 
588 0 |a Print version record. 
520 |a This work shows clearly how the study of concrete control systems has motivated the development of the mathematical tools needed for solving such problems. In many cases, by using this apparatus, far-reaching generalizations have been made, and its further development will have an important effect on many fields of mathematics. In the book, a way is demonstrated in which the study of the Watt flyball governor has given rise to the theory of stability of motion. The criteria of controllability, observability, and stabilization are stated. Analysis is made of dynamical systems, which describe an autopilot, spacecraft orientation system, controllers of a synchronous electric machine, and phase-locked loops. The Aizerman and Brockett problems are discussed and an introduction to the theory of discrete control systems is given. 
505 0 |a Preface; Chapter 1 The Watt governor and the mathematical theory of stability of motion; 1.1 The Watt flyball governor and its modifications; 1.2 The Hermite-Mikhailov criterion; 1.3 Theorem on stability by the linear approximation 
505 8 |a 1.4 The Watt governor transient processes Chapter 2 Linear electric circuits. Transfer functions and frequency responses of linear blocks; 2.1 Description of linear blocks; 2.2 Transfer functions and frequency responses of linear blocks; Chapter 3 Controllability, observability, stabilization; 3.1 Controllability 
505 8 |a 3.2 Observability 3.3 A special form of the systems with controllable pair (A, b); 3.4 Stabilization. The Nyquist criterion; 3.5 The time-varying stabilization. The Brockett problem; Chapter 4 Two-dimensional control systems. Phase portraits; 4.1 An autopilot and spacecraft orientation system 
505 8 |a 4.2 A synchronous electric machine control and phase locked loops 4.3 The mathematical theory of populations; Chapter 5 Discrete systems; 5.1 Motivation; 5.2 Linear discrete systems; 5.3 The discrete phase locked loops for array processors 
505 8 |a Chapter 6 The Aizerman conjecture. The Popov method Bibliography; Index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Control theory  |x Mathematical models. 
650 6 |a Théorie de la commande  |x Modèles mathématiques. 
650 7 |a COMPUTERS  |x Cybernetics.  |2 bisacsh 
650 7 |a Control theory  |x Mathematical models  |2 fast 
776 0 8 |i Print version:  |a Leonov, Gennadiĭ Alekseevich.  |t Mathematical problems of control theory.  |d Singapore ; River Edge, NJ : World Scientific, ©2001  |z 9810246943  |z 9789810246945  |w (DLC) 2002278973  |w (OCoLC)48821685 
830 0 |a Series on stability, vibration, and control of systems.  |n Series A ;  |v v. 6. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235796  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685497 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679603 
938 |a EBSCOhost  |b EBSC  |n 235796 
938 |a YBP Library Services  |b YANK  |n 2915182 
994 |a 92  |b IZTAP