Cargando…

Energy of knots and conformal geometry /

Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a k...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: O'Hara, Jun
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, ©2003.
Colección:K & E series on knots and everything ; v. 33.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn268676330
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081103s2003 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d OCLCO  |d YDXCP  |d STF  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d AGLDB  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d OCLCQ  |d WRM  |d VTS  |d NRAMU  |d VT2  |d OCLCQ  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d UKCRE  |d OCLCO  |d OCLCQ 
019 |a 505144343  |a 646768733  |a 764501354  |a 961529951  |a 962725697  |a 968287186  |a 988537467  |a 991955324  |a 1037784504  |a 1038649077  |a 1045457146  |a 1153461890 
020 |a 9789812795304  |q (electronic bk.) 
020 |a 9812795308  |q (electronic bk.) 
020 |z 9812383166  |q (alk. paper) 
029 1 |a AU@  |b 000049162620 
029 1 |a AU@  |b 000051546783 
029 1 |a DEBBG  |b BV043095654 
029 1 |a DEBSZ  |b 422099651 
029 1 |a NZ1  |b 13858127 
035 |a (OCoLC)268676330  |z (OCoLC)505144343  |z (OCoLC)646768733  |z (OCoLC)764501354  |z (OCoLC)961529951  |z (OCoLC)962725697  |z (OCoLC)968287186  |z (OCoLC)988537467  |z (OCoLC)991955324  |z (OCoLC)1037784504  |z (OCoLC)1038649077  |z (OCoLC)1045457146  |z (OCoLC)1153461890 
050 4 |a QA612.2  |b .O36 2003eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.224  |2 22 
049 |a UAMI 
100 1 |a O'Hara, Jun. 
245 1 0 |a Energy of knots and conformal geometry /  |c Jun O'Hara. 
260 |a River Edge, NJ :  |b World Scientific,  |c ©2003. 
300 |a 1 online resource (xiv, 288 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a K & E series on knots and everything ;  |v v. 33 
504 |a Includes bibliographical references (pages 271-284) and index. 
588 0 |a Print version record. 
505 0 |a pt. 1. In search of the "optimal embedding" of a knot. ch. 1. Introduction. 1.1. Motivational problem. 1.2. Notations and remarks -- ch. 2. [symbol]-energy functional E([symbol]). 2.1. Renormalizations of electrostatic energy of charged knots. 2.2. Renormalizations of r[symbol] -modified electrostatic energy, E([symbol]). 2.3. Asymptotic behavior of r-[symbol] energy of polygonal knots. 2.4. The self-repulsiveness of E([symbol]) -- ch. 3. On E(2). 3.1. Continuity. 3.2 Behavior of E(2) under "pull-tight" -- 3.3. Möbius invariance. 3.4. The cosine formula for E(2). 3.5. Existence of E(2) minimizers. 3.6. Average crossing number and finiteness of knot types. 3.7. Gradient, regularity of E(2) minimizers, and criterion of criticality. 3.8. Unstable E(2)-critical torus knots. 3.9. Energy associated to a diagram. 3.10. Normal projection energies. 3.11. Generalization to higher dimensions -- ch. 4. L[symbol] norm energy with higher index. 4.1. Definition of ([symbol], p)-energy functional for knots e[symbol, p]. 4.2. Control of knots by E[symbol, p] (e[symbol, p]). 4.3. Complete system of admissible solid tori and finiteness of knot types. 4.4. Existence of E[symbol, p] minimizers. 4.5. The circles minimize E[symbol, p]. 4.6. Definition of [symbol]-energy polynomial for knots. 4.7. Brylinski's beta function for knots. 4.8. Other L[symbol]-norm energies -- ch. 5. Numerical experiments. 5.1. Numerical experiments on E(2). 5.2. [symbol]> 2 cases. The limit as n [symbol][symbol] when [symbol][symbol] 3. 5.3. Table of approximate minimum energies -- ch. 6. Stereo pictures of E(2) minimizers -- ch. 7. Energy of knots in a Riemannian manifold. 7.1. Definition of the unit density ([symbol], p)-energy E[symbol][symbol]. 7.2. Control of knots by E[symbol][symbol]. 7.3. Existence of energy minimizers. 7.4. Examples : energy of knots in S3 and H3. 7.5. Other definitions. 7.6. The existence of energy minimizers -- ch. 8. Physical knot energies. 8.1. Thickness and ropelength. 8.2. Four thirds law. 8.3. Osculating circles and osculating spheres. 8.4. Global radius of curvature. 8.5. Self distance type energies defined via the distance function. 8.6. Relation between these geometric quantities and e[symbol][symbol]. 8.7. Numerical computations and applications. 
505 8 |a pt. 2. Energy of knots from a conformal geometric viewpoint. ch. 9. Preparation from conformal geometry. 9.1. The Lorentzian metric on Minkowski space. 9.2. The Lorentzian exterior product. 9.3. The space of spheres. 9.4. The 4-tuple map and the cross ratio of 4 points. 9.5. Pencils of spheres. 9.6. Modulus of an annulus. 9.7. Cross-separating annuli and the modulus of four points. 9.8. The measure on the space of spheres A. 9.9. Orientations of 2-spheres -- ch. 10. The space of non-trivial spheres of a knot. 10.1. Non-trivial spheres of a knot. 10.2. The 4-tuple map for a knot. 10.3. Generalization of the 4-tuple map to the diagonal. 10.4. Lower semi-continuity of the radii of non-trivial spheres -- ch. 11. The infinitesimal cross ratio. 11.1. The infinitesimal cross ratio of the complex plane. 11.2. The real part as the canonical symplectic form of T*S2. 11.3. The infinitesimal cross ratio for a knot. 11.4. From the cosine formula to the original definition of E(2). 11.5.E[symbol]-energy for links -- ch. 12. The conformal sin energy E[symbol][symbol]. 12.1. The projection of the inverted open knot. 12.2. The geometric meaning of E[symbol][symbol]. 12.3. Self-repulsiveness of E[symbol][symbol]. 12.4. E[symbol][symbol] and the average crossing number. 12.5. E[symbol][symbol] for links -- ch. 13. Measure of non-trivial spheres. 13.1. Non-trivial spheres, tangent spheres and twice tangent spheres. 13.2. The volume of the set of the non-trivial spheres. 13.3. The measure of non-trivial spheres in terms of the infinitesimal cross ratio. 13.4. Non-trivial annuli and the modulus of a knot. 13.5. Self-repulsiveness of the measure of non-trivial spheres. 13.6. The measure of non-trivial spheres for non-trivial knots. 13.7. Measure of non-trivial spheres for links. 
520 |a Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a knot in each knot type. It also considers this problem in the context of conformal geometry. The energies presented in the book are defined geometrically. They measure the complexity of embeddings and have applications to physical knotting and unknotting through numerical experiments 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Knot theory. 
650 0 |a Conformal geometry. 
650 6 |a Théorie des nœuds. 
650 6 |a Géométrie conforme. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Conformal geometry.  |2 fast  |0 (OCoLC)fst00875029 
650 7 |a Knot theory.  |2 fast  |0 (OCoLC)fst00988171 
776 0 8 |i Print version:  |a O'Hara, Jun.  |t Energy of knots and conformal geometry.  |d River Edge, NJ : World Scientific, ©2003  |z 9812383166  |z 9789812383167  |w (DLC) 2003041104  |w (OCoLC)51478044 
830 0 |a K & E series on knots and everything ;  |v v. 33. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235634  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685176 
938 |a ebrary  |b EBRY  |n ebr10255786 
938 |a EBSCOhost  |b EBSC  |n 235634 
938 |a YBP Library Services  |b YANK  |n 2915174 
994 |a 92  |b IZTAP