Steiner tree problems in computer communication networks /
The Steiner tree problem is one of the most important combinatorial optimization problems. It has a long history that can be traced back to the famous mathematician Fermat (1601-1665). This book studies three significant breakthroughs on the Steiner tree problem that were achieved in the 1990s, and...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hackensack, NJ :
World Scientific,
©2008.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Minimax approach and Steiner ratio. 1.1. Minimax approach. 1.2. Steiner ratio in the Euclidean plane. 1.3. Steiner ratios in other metric spaces. 1.4. Discussions
- 2. k-Steiner ratios and better approximation algorithms. 2.1. k-Steiner ratio. 2.2. Approximations better than minimum spanning tree. 2.3. Discussions
- 3. Geometric partitions and polynomial time approximation schemes. 3.1. Guillotine cut for rectangular partition. 3.2. Portals. 3.3. Banyan and Spanner. 3.4. Discussions
- 4. Grade of service Steiner Tree problem. 4.1. GoSST problem in the Euclidean plane. 4.2. Minimum GoSST problem in graphs. 4.3. Discussions
- 5. Steiner Tree problem for minimal Steiner points. 5.1. In the Euclidean plane. 5.2. In the rectilinear plane. 5.3. In metric spaces. 5.4. Discussions
- 6. Bottleneck Steiner tree problem. 6.1. Complexity study. 6.2. Steinerized minimum spanning tree algorithm. 6.3. 3-restricted Steiner Tree algorithm. 6.4. Discussions
- 7. Steiner k-Tree and k-Path routing problems. 7.1. Problem formulation and complexity study. 7.2. Algorithms for k-Path routing problem. 7.3. Algorithms for k-Tree routing problem. 7.4. Discussions
- 8. Steiner Tree coloring problem. 8.1. Maximum tree coloring. 8.2. Minimum tree coloring. 8.3. Discussions
- 9. Steiner Tree scheduling problem. 9.1. Minimum aggregation time. 9.2. Minimum multicast time problem. 9.3. Discussions
- 10. Survivable Steiner network problem. 10.1. Minimum k-connected Steiner networks. 10.2. Minimum weak two-connected Steiner networks. 10.3. Minimum weak three-edge-connected Steiner networks. 10.4. Discussions.