Cargando…

Steiner tree problems in computer communication networks /

The Steiner tree problem is one of the most important combinatorial optimization problems. It has a long history that can be traced back to the famous mathematician Fermat (1601-1665). This book studies three significant breakthroughs on the Steiner tree problem that were achieved in the 1990s, and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Du, Dingzhu
Otros Autores: Hu, Xiaodong
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, NJ : World Scientific, ©2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn263426948
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081024s2008 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d NLGGC  |d M6U  |d CNMTR  |d OCLCQ  |d COCUF  |d ZCU  |d OCLCQ  |d VTS  |d AGLDB  |d VT2  |d OCLCQ  |d WYU  |d STF  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d HS0  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 696629533  |a 1055362612  |a 1064042657  |a 1081208583  |a 1086500453 
020 |a 9789812791450  |q (electronic bk.) 
020 |a 9812791450  |q (electronic bk.) 
020 |a 9812791442 
020 |a 9789812791443 
020 |a 1281933945 
020 |a 9781281933942 
029 1 |a AU@  |b 000051414106 
029 1 |a DEBBG  |b BV043074318 
029 1 |a DEBSZ  |b 422095281 
029 1 |a GBVCP  |b 80270087X 
029 1 |a AU@  |b 000074662285 
035 |a (OCoLC)263426948  |z (OCoLC)696629533  |z (OCoLC)1055362612  |z (OCoLC)1064042657  |z (OCoLC)1081208583  |z (OCoLC)1086500453 
050 4 |a QA166.3  |b .D8 2008eb 
072 7 |a COM  |x 043060  |2 bisacsh 
072 7 |a COM  |x 020000  |2 bisacsh 
072 7 |a PGK  |2 bicssc 
082 0 4 |a 004.6  |2 22 
049 |a UAMI 
100 1 |a Du, Dingzhu. 
245 1 0 |a Steiner tree problems in computer communication networks /  |c Dingzhu Du, Xiaodong Hu. 
260 |a Hackensack, NJ :  |b World Scientific,  |c ©2008. 
300 |a 1 online resource (xiii, 359 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 337-353) and index. 
588 0 |a Print version record. 
505 0 |a 1. Minimax approach and Steiner ratio. 1.1. Minimax approach. 1.2. Steiner ratio in the Euclidean plane. 1.3. Steiner ratios in other metric spaces. 1.4. Discussions -- 2. k-Steiner ratios and better approximation algorithms. 2.1. k-Steiner ratio. 2.2. Approximations better than minimum spanning tree. 2.3. Discussions -- 3. Geometric partitions and polynomial time approximation schemes. 3.1. Guillotine cut for rectangular partition. 3.2. Portals. 3.3. Banyan and Spanner. 3.4. Discussions -- 4. Grade of service Steiner Tree problem. 4.1. GoSST problem in the Euclidean plane. 4.2. Minimum GoSST problem in graphs. 4.3. Discussions -- 5. Steiner Tree problem for minimal Steiner points. 5.1. In the Euclidean plane. 5.2. In the rectilinear plane. 5.3. In metric spaces. 5.4. Discussions -- 6. Bottleneck Steiner tree problem. 6.1. Complexity study. 6.2. Steinerized minimum spanning tree algorithm. 6.3. 3-restricted Steiner Tree algorithm. 6.4. Discussions -- 7. Steiner k-Tree and k-Path routing problems. 7.1. Problem formulation and complexity study. 7.2. Algorithms for k-Path routing problem. 7.3. Algorithms for k-Tree routing problem. 7.4. Discussions -- 8. Steiner Tree coloring problem. 8.1. Maximum tree coloring. 8.2. Minimum tree coloring. 8.3. Discussions -- 9. Steiner Tree scheduling problem. 9.1. Minimum aggregation time. 9.2. Minimum multicast time problem. 9.3. Discussions -- 10. Survivable Steiner network problem. 10.1. Minimum k-connected Steiner networks. 10.2. Minimum weak two-connected Steiner networks. 10.3. Minimum weak three-edge-connected Steiner networks. 10.4. Discussions. 
520 |a The Steiner tree problem is one of the most important combinatorial optimization problems. It has a long history that can be traced back to the famous mathematician Fermat (1601-1665). This book studies three significant breakthroughs on the Steiner tree problem that were achieved in the 1990s, and some important applications of Steiner tree problems in computer communication networks researched in the past fifteen years. It not only covers some of the most recent developments in Steiner tree problems, but also discusses various combinatorial optimization methods, thus providing a balance between theory and practice. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Steiner systems. 
650 0 |a Computer networks. 
650 2 |a Computer Communication Networks 
650 6 |a Systèmes de Steiner. 
650 6 |a Réseaux d'ordinateurs. 
650 7 |a COMPUTERS  |x Networking  |x Vendor Specific.  |2 bisacsh 
650 7 |a COMPUTERS  |x Data Transmission Systems  |x General.  |2 bisacsh 
650 7 |a Computer networks  |2 fast 
650 7 |a Steiner systems  |2 fast 
700 1 |a Hu, Xiaodong. 
776 0 8 |i Print version:  |a Du, Dingzhu.  |t Steiner tree problems in computer communication networks.  |d Hackensack, NJ : World Scientific, ©2008  |z 9812791442  |z 9789812791443  |w (DLC) 2008299551  |w (OCoLC)191658455 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236079  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684965 
938 |a EBSCOhost  |b EBSC  |n 236079 
938 |a YBP Library Services  |b YANK  |n 2895718 
994 |a 92  |b IZTAP