Cargando…

Introduction to 2-spinors in general relativity /

This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the alge...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: O'Donnell, Peter J., 1964-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2003.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn263148406
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081023s2003 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d YDXCP  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d I9W  |d EBLCP  |d DEBSZ  |d OCLCQ  |d NLGGC  |d OCLCQ  |d LOA  |d JBG  |d AGLDB  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d OCLCQ  |d VT2  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d HS0  |d UKCRE  |d VLY  |d AJS  |d OCLCO  |d DST  |d OCLCQ  |d OCLCO 
019 |a 505142788  |a 646768385  |a 764499700  |a 815752540  |a 961539892  |a 962607110  |a 968289140  |a 988457660  |a 992053215  |a 1037700722  |a 1038621563  |a 1045487278  |a 1055319643  |a 1086510757  |a 1153519806  |a 1162051510  |a 1227630267  |a 1241755622  |a 1259149952  |a 1290112110  |a 1300639382  |a 1303324439  |a 1303480274  |a 1306567835 
020 |a 9789812795311  |q (electronic bk.) 
020 |a 9812795316  |q (electronic bk.) 
020 |a 1281935727 
020 |a 9781281935724 
020 |a 9786611935726 
020 |a 661193572X 
020 |z 9789812383075 
020 |z 9812383077 
029 1 |a AU@  |b 000049162764 
029 1 |a AU@  |b 000051374212 
029 1 |a DEBBG  |b BV043158875 
029 1 |a DEBBG  |b BV044179558 
029 1 |a DEBSZ  |b 405248644 
029 1 |a DEBSZ  |b 422099643 
029 1 |a DEBSZ  |b 445555912 
029 1 |a DKDLA  |b 820010-katalog:ssj0000182338 
029 1 |a GBVCP  |b 80269988X 
029 1 |a NZ1  |b 13858000 
035 |a (OCoLC)263148406  |z (OCoLC)505142788  |z (OCoLC)646768385  |z (OCoLC)764499700  |z (OCoLC)815752540  |z (OCoLC)961539892  |z (OCoLC)962607110  |z (OCoLC)968289140  |z (OCoLC)988457660  |z (OCoLC)992053215  |z (OCoLC)1037700722  |z (OCoLC)1038621563  |z (OCoLC)1045487278  |z (OCoLC)1055319643  |z (OCoLC)1086510757  |z (OCoLC)1153519806  |z (OCoLC)1162051510  |z (OCoLC)1227630267  |z (OCoLC)1241755622  |z (OCoLC)1259149952  |z (OCoLC)1290112110  |z (OCoLC)1300639382  |z (OCoLC)1303324439  |z (OCoLC)1303480274  |z (OCoLC)1306567835 
050 4 |a QC20.7.S65  |b O35 2003eb 
072 7 |a SCI  |x 040000  |2 bisacsh 
072 7 |a PHR  |2 bicssc 
082 0 4 |a 530.15/563  |2 22 
049 |a UAMI 
100 1 |a O'Donnell, Peter J.,  |d 1964- 
245 1 0 |a Introduction to 2-spinors in general relativity /  |c Peter O'Donnell. 
246 3 0 |a 2-spinors in general relativity 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2003. 
300 |a 1 online resource (xii, 191 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 181-184) and index. 
588 0 |a Print version record. 
505 0 |a 1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises. 
520 |a This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Spinor analysis. 
650 0 |a General relativity (Physics) 
650 6 |a Relativité générale (Physique) 
650 6 |a Analyse spinorielle. 
650 7 |a SCIENCE  |x Physics  |x Mathematical & Computational.  |2 bisacsh 
650 7 |a General relativity (Physics)  |2 fast 
650 7 |a Spinor analysis  |2 fast 
650 7 |a Relatividade (física)  |2 larpcal 
776 0 8 |i Print version:  |a O'Donnell, Peter J., 1964-  |t Introduction to 2-spinors in general relativity.  |d Singapore ; River Edge, NJ : World Scientific, ©2003  |z 9812383077  |z 9789812383075  |w (DLC) 2005297918  |w (OCoLC)52803565 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235635  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685177 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681610 
938 |a EBSCOhost  |b EBSC  |n 235635 
938 |a YBP Library Services  |b YANK  |n 2895760 
994 |a 92  |b IZTAP