Cargando…

Biological networks /

This volume presents a timely and comprehensive overview of biological networks at all organization levels in the spirit of the complex systems approach. It discusses the transversal issues and fundamental principles as well as the overall structure, dynamics, and modeling of a wide array of biologi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Képès, François
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2007.
Colección:Complex systems and interdisciplinary science ; v. 3.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn262529963
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081015s2007 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d OCLCF  |d NLGGC  |d OCLCO  |d OCLCQ  |d VTS  |d VLY  |d AJS  |d OCLCO  |d OCLCQ 
019 |a 1162352962 
020 |a 9789812772367  |q (electronic bk.) 
020 |a 9812772367  |q (electronic bk.) 
020 |a 1281912018 
020 |a 9781281912015 
020 |a 9786611912017 
020 |a 6611912010 
029 1 |a AU@  |b 000048716172 
029 1 |a DEBBG  |b BV043124436 
029 1 |a DEBSZ  |b 42209577X 
029 1 |a GBVCP  |b 802688837 
035 |a (OCoLC)262529963  |z (OCoLC)1162352962 
050 4 |a QH324.2  |b .B58 2007eb 
072 7 |a COM  |x 082000  |2 bisacsh 
082 0 4 |a 572.80285  |2 22 
049 |a UAMI 
245 0 0 |a Biological networks /  |c editor, François Képès. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2007. 
300 |a 1 online resource (xiv, 516 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Complex systems and interdisciplinary science ;  |v v. 3 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Preface; Challenges; Outline; Acknowledgements; Contributors; Chapter 1 Scale-Free Networks in Biology Eivind Almaas, Alexei Vázquez and Albert-László Barabási; 1. Introduction; 2. Characterizing Network Topology; 2.1. Degree Distribution; 2.2. Clustering Coefficient; 2.3. Subgraphs and Motifs; 3. Network Models; 3.1. Random Network Model; 3.2. Scale-Free Network Model; 3.3. Hierarchical Network Model; 3.4. Bose-Einstein Condensation and Networks; 4. Network Utilization; 4.1. Flux Utilization; 4.2. Gene Interactions; 5. Conclusion; References 
505 8 |a Chapter 2 Modularity in Biological Networks Ricard V. Solé, Sergi Valverde and Carlos Rodriguez-Caso1. Introduction; 2. Topological Overlap; 3. Modular Networks: The Role of Tinkering; 4. Conclusions; Acknowledgments; References; Chapter 3 Inference of Biological Regulatory Networks: Machine Learning Approaches Florence d'Alché-Buc; 1. Introduction; 1.1. Feasibility of Inference; 1.2. Overview of Methods; 2. The Inference of Gene Regulatory Networks as a Machine Learning Problem; 2.1. Gene Regulatory Networks; 2.2. Machine Learning: A Short Definition 
505 8 |a 2.3. A Methodology for the Conception of a Learning Algorithm3. Representation Issues; 3.1. Prerequisites; 3.2. Questions When Accounting for Dynamics; 3.2.1. Encoding the Data; 3.2.2. Identifiability, Learnability and Sample Complexity; 3.2.3. Time-Scale, Sampling Frequency and Irregular Sampling; 3.2.4. Continuous versus Discretized Encoding; 3.3. Deterministic Models of Dynamics; 3.3.1. Temporal Boolean Network Models; 3.3.2. Linear Networks; 3.3.3. Artificial Recurrent Neural Networks; 3.4. Probabilistic Models of Dynamics; 3.4.1. Linear Models and Linear State-Space Models 
505 8 |a 3.4.2. Dynamical Bayesian Networks Using non Parametric Regression for Conditional Probability Distributions (CPD)3.4.3. Models of Biochemical Processes; 3.5. Static Models of Causal Dependencies; 3.5.1. Bayesian Networks; 3.5.2. Probabilistic Relational Models; 3.5.3. Module Networks; 3.5.4. Factor Graph Networks (FGN); 4. Learning and Optimization; 4.1. Exact Learning and Best-Fit Approaches; 4.2. Statistical Learning; 4.2.1. Mean Squared Error and Weight Decay for Neural Networks; 4.2.2. Maximum A Posteriori Approaches for Learning Parameters of Bayesian Networks; 4.2.3. Structure Learning 
505 8 |a 5. Validation5.1. Introduction to Validation; 5.2. Statistical Validation of Network Inference; 5.2.1. Model Selection via Sampling and Re-sampling Methods; 5.2.2. Prediction on Unseen Data; 5.2.3. Performance Evaluation on Known Networks (Simulated or Real); 5.3. Biological Validation; 6. Conclusion and Perspectives; References; Chapter 4 Transcriptional Networks François Képès; 1. Introduction; 2. Interacting Partners; 2.1. Genes and DNA Regulatory Regions; 2.2. Regulatory Proteins or Dedicated Transcription Factors 
520 |a This volume presents a timely and comprehensive overview of biological networks at all organization levels in the spirit of the complex systems approach. It discusses the transversal issues and fundamental principles as well as the overall structure, dynamics, and modeling of a wide array of biological networks at the molecular, cellular, and population levels. Anchored in both empirical data and a strong theoretical background, the book therefore lends valuable credence to the complex systems approach. Sample Chapter(s) Chapter 1: Scale-Free Networks in Biology (821 KB) C. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Bioinformatics. 
650 0 |a Computational biology. 
650 6 |a Bio-informatique. 
650 7 |a COMPUTERS  |x Bioinformatics.  |2 bisacsh 
650 7 |a Bioinformatics.  |2 fast  |0 (OCoLC)fst00832181 
650 7 |a Computational biology.  |2 fast  |0 (OCoLC)fst00871990 
700 1 |a Képès, François. 
776 0 8 |i Print version:  |t Biological networks.  |d Singapore ; Hackensack, NJ : World Scientific, ©2007  |z 9789812706959  |z 981270695X  |w (OCoLC)154672023 
830 0 |a Complex systems and interdisciplinary science ;  |v v. 3. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236027  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 236027 
938 |a YBP Library Services  |b YANK  |n 2891960 
994 |a 92  |b IZTAP