Cargando…

Methods of qualitative theory in nonlinear dynamics. Part 2 /

Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge betw...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Shilʹnikov, L. P.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, ©2001.
Colección:World Scientific series on nonlinear science. Monographs and treatises ; v. 5.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn261407028
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081010s2001 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d NLGGC  |d OCLCO  |d EBLCP  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d VTS  |d AGLDB  |d ICG  |d INT  |d OCLCQ  |d YOU  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ 
019 |a 879074291 
020 |a 9789812798558  |q (electronic bk.) 
020 |a 9812798552  |q (electronic bk.) 
029 1 |a AU@  |b 000058360687 
029 1 |a DEBBG  |b BV043163296 
029 1 |a DEBBG  |b BV044179051 
029 1 |a DEBSZ  |b 407526188 
029 1 |a DEBSZ  |b 422096709 
029 1 |a GBVCP  |b 802688330 
035 |a (OCoLC)261407028  |z (OCoLC)879074291 
050 4 |a QA614.8  |b .M47eb pt. 2 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.74  |2 22 
049 |a UAMI 
245 0 0 |a Methods of qualitative theory in nonlinear dynamics.  |n Part 2 /  |c Leonid P. Shilnikov [and others]. 
260 |a New Jersey :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World scientific series on nonlinear science. Series A, Monographs and treatises ;  |v v. 5 
504 |a Includes bibliographical references (pages 927-942) and index. 
588 0 |a Print version record. 
505 0 |a Introduction to Part II; Contents; Chapter 7. STRUCTURALLY STABLE SYSTEMS; 7.1. Rough systems on a plane. Andronov-Pontryagin theorem; 7.2. The set of center motions; 7.3. General classification of center motions; 7.4. Remarks on roughness of high-order dynamical systems; 7.5. Morse-Smale systems; 7.6. Some properties of Morse-Smale systems; Chapter 8. BIFURCATIONS OF DYNAMICAL SYSTEMS; 8.1. Systems of first degree of non-roughness; 8.2. Remarks on bifurcations of multi-dimensional systems; 8.3. Structurally unstable homoclinic and heteroclinic orbits. Moduli of topological equivalence. 
505 8 |a 8.4. Bifurcations in finite-parameter families of systems. Andronov's setupChapter 9. THE BEHAVIOR OF DYNAMICAL SYSTEMS ON STABILITY BOUNDARIES OF EQUILIBRIUM STATES; 9.1. The reduction theorems. The Lyapunov functions; 9.2. The first critical case; 9.3. The second critical case; Chapter 10. THE BEHAVIOR OF DYNAMICAL SYSTEMS ON STABILITY BOUNDARIES OF PERIODIC TRAJECTORIES; 10.1. The reduction of the Poincare map. Lyapunov functions; 10.2. The first critical case; 10.3. The second critical case; 10.4. The third critical case. Weak resonances; 10.5. Strong resonances. 
505 8 |a 10.6. Passage through strong resonance on stability boundary10.7. Additional remarks on resonances; Chapter 11. LOCAL BIFURCATIONS ON THE ROUTE OVER STABILITY BOUNDARIES; 11.1. Bifurcation surface and transverse families; 11.2. Bifurcation of an equilibrium state with one zero exponent; 11.3. Bifurcation of periodic orbits with multiplier +1; 11.4. Bifurcation of periodic orbits with multiplier -1; 11.5. Andronov-Hopf bifurcation; 11.6. Birth of invariant torus; 11.7. Bifurcations of resonant periodic orbits accompanying the birth of invariant torus. 
505 8 |a Chapter 12. GLOBAL BIFURCATIONS AT THE DISAPPEARANCE OF SADDLE-NODE EQUILIBRIUM STATES AND PERIODIC ORBITS12.1. Bifurcations of a homoclinic loop to a saddle-node equilibrium state; 12.2. Creation of an invariant torus; 12.3. The formation of a Klein bottle; 12.4. The blue sky catastrophe; 12.5. On embedding into the flow; Chapter 13. BIFURCATIONS OF HOMOCLINIC LOOPS OF SADDLE EQUILIBRIUM STATES; 13.1. Stability of a separatrix loop on the plane; 13.2. Bifurcation of a limit cycle from a separatrix loop of a saddle with non-zero saddle value. 
505 8 |a 13.3. Bifurcations of a separatrix loop with zero saddle value13.4. Birth of periodic orbits from a homoclinic loop (the case dim Wu = 1); 13.5. Behavior of trajectories near a homoclinic loop in the case dim Wu> 1; 13.6. Codimension-two bifurcations of homoclinic loops; 13.7. Bifurcations of the homoclinic-8 and heteroclinic cycles; 13.8. Estimates of the behavior of trajectories near a saddle equilibrium state; Chapter 14. SAFE AND DANGEROUS BOUNDARIES; 14.1. Main stability boundaries of equilibrium states and periodic orbits. 
520 |a Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book has been written to serve that unfulfilled need. Following the footsteps of Poincaré, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many o. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Differentiable dynamical systems. 
650 0 |a Nonlinear theories. 
650 0 |a Nonlinear mechanics. 
650 6 |a Dynamique différentiable. 
650 6 |a Théories non linéaires. 
650 6 |a Mécanique non linéaire. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Differentiable dynamical systems.  |2 fast  |0 (OCoLC)fst00893426 
650 7 |a Nonlinear mechanics.  |2 fast  |0 (OCoLC)fst01038793 
650 7 |a Nonlinear theories.  |2 fast  |0 (OCoLC)fst01038812 
700 1 |a Shilʹnikov, L. P. 
776 0 8 |i Print version:  |t Methods of qualitative theory in nonlinear dynamics. Part 2.  |d New Jersey : World Scientific, ©2001  |z 9810240724  |z 9789810240721  |w (DLC) 2001278599  |w (OCoLC)48877728 
830 0 |a World Scientific series on nonlinear science.  |n Series A,  |p Monographs and treatises ;  |v v. 5. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235933  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685409 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679746 
938 |a EBSCOhost  |b EBSC  |n 235933 
938 |a YBP Library Services  |b YANK  |n 2889313 
994 |a 92  |b IZTAP