Cargando…

Microcanonical thermodynamics : phase transitions in "small" systems /

Boltzmann's formula S = In[W (E)] defines the microcanonical ensemble. The usual textbooks on statistical mechanics start with the microensemble but rather quickly switch to the canonical ensemble introduced by Gibbs. This has the main advantage of easier analytical calculations, but there is a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gross, Dieter H. E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; New Jersey : World Scientific, ©2001.
Colección:World Scientific lecture notes in physics ; v. 66.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn261340391
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 081009s2001 si a ob 001 0 engdd
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d OCLCO  |d YDXCP  |d MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d LOA  |d JBG  |d AGLDB  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d LEAUB  |d UKCRE  |d OCLCO  |d OCLCQ 
019 |a 646768286  |a 764499198  |a 879023861  |a 961529297  |a 962725394  |a 968258394  |a 988437528  |a 992111738  |a 1037767705  |a 1038690376  |a 1045508314  |a 1055388376  |a 1062883240  |a 1081230584  |a 1086440323  |a 1153551299  |a 1228546171 
020 |a 9789812798916  |q (electronic bk.) 
020 |a 9812798919  |q (electronic bk.) 
020 |z 9789810242152 
020 |z 9810242158 
029 1 |a AU@  |b 000049251131 
029 1 |a AU@  |b 000051395084 
029 1 |a DEBBG  |b BV043087433 
029 1 |a DEBBG  |b BV044179018 
029 1 |a DEBSZ  |b 405245521 
029 1 |a DEBSZ  |b 422096830 
029 1 |a GBVCP  |b 802687822 
029 1 |a NZ1  |b 13857962 
035 |a (OCoLC)261340391  |z (OCoLC)646768286  |z (OCoLC)764499198  |z (OCoLC)879023861  |z (OCoLC)961529297  |z (OCoLC)962725394  |z (OCoLC)968258394  |z (OCoLC)988437528  |z (OCoLC)992111738  |z (OCoLC)1037767705  |z (OCoLC)1038690376  |z (OCoLC)1045508314  |z (OCoLC)1055388376  |z (OCoLC)1062883240  |z (OCoLC)1081230584  |z (OCoLC)1086440323  |z (OCoLC)1153551299  |z (OCoLC)1228546171 
050 4 |a QC311.5  |b .G73 2001eb 
072 7 |a SCI  |x 065000  |2 bisacsh 
082 0 4 |a 536/.7  |2 22 
049 |a UAMI 
100 1 |a Gross, Dieter H. E. 
245 1 0 |a Microcanonical thermodynamics :  |b phase transitions in "small" systems /  |c Dieter H.E. Gross. 
246 3 0 |a Phase transitions in "small" systems 
260 |a Singapore ;  |a New Jersey :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xv, 269 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific lecture notes in physics ;  |v v. 66 
504 |a Includes bibliographical references (pages 249-263) and index. 
588 0 |a Print version record. 
520 |a Boltzmann's formula S = In[W (E)] defines the microcanonical ensemble. The usual textbooks on statistical mechanics start with the microensemble but rather quickly switch to the canonical ensemble introduced by Gibbs. This has the main advantage of easier analytical calculations, but there is a price to pay - for example, phase transitions can only be defined in the thermodynamic limit of infinite system size. The question how phase transitions show up from systems with, say, 100 particles with an increasing number towards the bulk can only be answered when one finds a way to define and clas. 
505 0 |a Preface. 0.1. Who is addressed, and why. 0.2. A necessary clarification. 0.3. Acknowledgment -- ch. 1. Introduction. 1.1. Phase transitions and thermodynamics in "small" systems. 1.2. Boltzmann gives the key. 1.3. Micro-canonical thermodynamics describes non-extensive systems. 1.4. Some realistic systems: nuclei and atomic clusters. 1.5. Plan of this book -- ch. 2. The mechanical basis of thermodynamics. 2.1. Basic definitions. 2.2. The thermodynamic limit, the global concavity of s(e, n). 2.3. Phase transitions micro-canonically. 2.4. Second Law of Thermodynamics and Boltzmann's entropy -- ch. 3. Micro-canonical thermodynamics of phase transitions studied in the Potts model. 3.1. Introduction. 3.2. The surface tension in the Potts model. [GEZ50]. 3.3. The topology of the entropy surface S(E, N) for Potts lattice gases [GV99]. 3.4. On the origin of isolated critical points and critical lines -- ch. 4. Liquid-gas transition and surface tension under constant pressure. 4.1. Andersen's constant pressure ensemble. 4.2. Micro-canonical ensemble with given pressure; The enthalpy. 4.3. Liquid-gas transition in realistic metal systems. 4.4. The relation to the method of the Gibbs-ensemble. 4.5. Alternative microscopic methods to calculate the surface tension. 4.6. Criticism and necessary improvements of the computational method. 4.7. Conclusion -- ch. 5. Statistical fragmentation under repulsive forces of long range. 5.1. Introduction. 5.2. Three dimensional stress of long range: the Coulomb force. 5.3. Two dimensional stress of long range: rapidly rotating hot nuclei[BG95b]. 5.4. Conclusion -- ch. 6. The collapse transition in self-gravitating systems. First model-studies. 6.1. 1 -- and 2 -- dim. Hamiltonian Mean Field Model, a caricature of phase transitions under self-gravitation. 6.2. Collapse of non-extensive (gravitating) systems under conserved angular momentum. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Statistical thermodynamics. 
650 0 |a Phase transformations (Statistical physics) 
650 6 |a Thermodynamique statistique. 
650 6 |a Transitions de phase. 
650 7 |a SCIENCE  |x Mechanics  |x Thermodynamics.  |2 bisacsh 
650 7 |a Phase transformations (Statistical physics)  |2 fast  |0 (OCoLC)fst01060410 
650 7 |a Statistical thermodynamics.  |2 fast  |0 (OCoLC)fst01132092 
650 7 |a Termodinâmica.  |2 larpcal 
776 0 8 |i Print version:  |a Gross, Dieter H.E.  |t Microcanonical thermodynamics.  |d Singapore ; New Jersey : World Scientific, ©2001  |z 9810242158  |z 9789810242152  |w (DLC) 2002275558  |w (OCoLC)47215466 
830 0 |a World Scientific lecture notes in physics ;  |v v. 66. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235920  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685437 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1679683 
938 |a ebrary  |b EBRY  |n ebr10255500 
938 |a EBSCOhost  |b EBSC  |n 235920 
938 |a YBP Library Services  |b YANK  |n 2889315 
994 |a 92  |b IZTAP