|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn261121655 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
081007s2001 si a ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d YDXCP
|d OCLCQ
|d IDEBK
|d OCLCQ
|d OCLCF
|d NLGGC
|d EBLCP
|d DEBSZ
|d OCLCQ
|d STF
|d OCLCQ
|d COCUF
|d ZCU
|d OCLCQ
|d MERUC
|d U3W
|d OCLCQ
|d VTS
|d AGLDB
|d ICG
|d INT
|d OCLCQ
|d YOU
|d OCLCQ
|d LEAUB
|d JBG
|d DKC
|d AU@
|d OCLCQ
|d M8D
|d UKAHL
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 815754176
|a 1078107113
|
020 |
|
|
|a 9789812799692
|q (electronic bk.)
|
020 |
|
|
|a 9812799699
|q (electronic bk.)
|
020 |
|
|
|a 1281948012
|
020 |
|
|
|a 9781281948014
|
029 |
1 |
|
|a DEBBG
|b BV043130764
|
029 |
1 |
|
|a DEBBG
|b BV044179534
|
029 |
1 |
|
|a DEBSZ
|b 405248555
|
029 |
1 |
|
|a DEBSZ
|b 422098345
|
029 |
1 |
|
|a GBVCP
|b 802685145
|
035 |
|
|
|a (OCoLC)261121655
|z (OCoLC)815754176
|z (OCoLC)1078107113
|
050 |
|
4 |
|a QA649
|b .G527 2001eb
|
072 |
|
7 |
|a MAT
|x 012020
|2 bisacsh
|
072 |
|
7 |
|a PBMP
|2 bicssc
|
082 |
0 |
4 |
|a 516.3/73
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Gilkey, Peter B.
|
245 |
1 |
0 |
|a Geometric properties of natural operators defined by the Riemann curvature tensor /
|c Peter B. Gilkey.
|
260 |
|
|
|a Singapore ;
|a River Edge, NJ :
|b World Scientific,
|c ©2001.
|
300 |
|
|
|a 1 online resource (viii, 306 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 293-302) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a A central problem in differential geometry is to relate algebraic properties of the Riemann curvature tensor to the underlying geometry of the manifold. The full curvature tensor is in general quite difficult to deal with. This book presents results about the geometric consequences that follow if various natural operators defined in terms of the Riemann curvature tensor (the Jacobi operator, the skew-symmetric curvature operator, the Szabo operator, and higher order generalizations) are assumed to have constant eigenvalues or constant Jordan normal form in the appropriate domains of definition. The book presents algebraic preliminaries and various Schur type problems; deals with the skew-symmetric curvature operator in the real and complex settings and provides the classification of algebraic curvature tensors whose skew-symmetric curvature has constant rank 2 and constant eigenvalues; discusses the Jacobi operator and a higher order generalization and gives a unified treatment of the Osserman conjecture and related questions; and establishes the results from algebraic topology that are necessary for controlling the eigenvalue structures. An extensive bibliography is provided. Results are described in the Riemannian, Lorentzian, and higher signature settings, and many families of examples are displayed.
|
505 |
0 |
|
|a Ch. 1. Algebraic curvature tensors. 1.1. Introduction. 1.2. Results from linear algebra. 1.3. Self-adjoint maps of a spacelike vector space. 1.4. Clifford algebras and matrices. 1.5. Natural operators. 1.6. Algebraic curvature tensors. 1.7. Einstein and k-stein algebraic curvature tensors. 1.8. Properties of the curvature tensors R[symbol]. 1.9. Invariants of the orthogonal group. 1.10. Natural operators with constant eigenvalues. 1.11. The exponential map and Jacobi vector fields. 1.12. Geometric realizations of algebraic curvature tensors. 1.13. Schur problems. 1.14. Space forms. 1.15. Complex and para-complex space forms -- ch. 2. The Skew-symmetric curvature operator. 2.1. Introduction. 2.2. Examples. 2.3. Rank 2 algebraic curvature tensors. 2.4. Geometric realizations of rank 2 tensors. 2.5. IP algebraic curvature tensors. 2.6. Examples of IP manifolds. 2.7. Classification of IP manifolds. 2.8. Four dimensional geometry. 2.9. Seven dimensional geometry. 2.10. Eight dimensional geometry. 2.11. Almost complex IP tensors. 2.12. Higher order IP tensors -- ch. 3. The Jacobi operator. 3.1. Introduction. 3.2. Examples of Osserman tensors. 3.3. Examples of higher order Osserman tensors. 3.4. Rakic duality. 3.5. The Osserman conjecture. 3.6. Space forms and (para- )complex space forms. 3.7. The higher order Jacobi operator. 3.8. The Szabo operator -- ch. 4. Controlling the eigenvalue structure. 4.1. Introduction. 4.2. Fiber bundles. 4.3. Characteristic classes and K-theory. 4.4. Symmetric vector bundles. 4.5. Odd maps of constant rank.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Geometry, Riemannian.
|
650 |
|
0 |
|a Curvature.
|
650 |
|
0 |
|a Operator theory.
|
650 |
|
6 |
|a Géométrie de Riemann.
|
650 |
|
6 |
|a Courbure.
|
650 |
|
6 |
|a Théorie des opérateurs.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Analytic.
|2 bisacsh
|
650 |
|
7 |
|a Curvature
|2 fast
|
650 |
|
7 |
|a Geometry, Riemannian
|2 fast
|
650 |
|
7 |
|a Operator theory
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Gilkey, Peter B.
|t Geometric properties of natural operators defined by the Riemann curvature tensor.
|d Singapore ; River Edge, NJ : World Scientific, ©2001
|z 9810247524
|z 9789810247522
|w (DLC) 2002284361
|w (OCoLC)49195512
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235768
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24685483
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1681579
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 235768
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 194801
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2889328
|
994 |
|
|
|a 92
|b IZTAP
|