Analysis of composite structures /
This book provides the basis for calculations of composite structures, using continuum mechanics to facilitate the treatment of more elaborate theories. A composite structure combines traditional materials (such as concrete) with new materials (such as high performance fibres) to explore and develop...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Francés |
Publicado: |
London :
HPS,
2002.
|
Colección: | Kogan Page Science paper edition
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Analysis of Composite Structures; Copyright Page; Contents; Foreword; Part I: Mechanical behaviour of composite materials; Chapter 1. Constitutive relations for anisotropic materials in linear elasticity; 1.1. Introduction; 1.2. Four indices tensor notation; 1.3. Conventional two indices Voigt notation; 1.4. Anisotropic material; 1.5. Matrix relations for a change of axes; Chapter 2. Orthotropic layer behaviour; 2.1. Introduction; 2.2. Stiffness and compliance matrices in orthotropic co-ordinates; 2.3. Conventional matrices for changing axes; 2.4. Stress and strain matrices
- 2.5. Stiffness matrix in directions away from the orthotropic axes2.6. Compliance matrix in directions away from the orthotropic axes; 2.7. Orthotropic layer loaded in tension and in shear; 2.8. Reduced stiffness matrix for the orthotropic layer; 2.9. Reduced compliance matrices of an orthotropic layer; Chapter 3. Elastic constants of a unidirectional composite; 3.1. Introduction; 3.2. Density?; 3.3. Longitudinal Young's modulus E1; 3.4. Poisson's coefficient v12; 3.5. Transverse Young's modulus E2; 3.6. Shear modulus Gl2; 3.7. Longitudinal thermal expansion coefficient a1
- 3.8. Transverse expansion coefficient a2Chapter 4. Failure criteria; 4.1. Introduction; 4.2. Maximum stress theory; 4.3. Maximum strain theory; 4.4. Polynomial failure criteria; 4.5. Tensile and shear strength of a unidirectional layer; 4.6. Determination of failure stresses from three tension tests; Part II: Multi-layer plates; Chapter 5. Multi-layer Kirchhoff-Love thin plates; 5.1. Introduction; 5.2. Kirchhoff-Love hypotheses for thin plates; 5.3. Strain-displacement relationships; 5.4. Global plate equations; 5.5. Calculation of I0; 5.6. Stress field; 5.7. Global cohesive forces
- 5.8. Composite global stiffness matrix5.9. Decoupling; 5.10. Global stiffnesses of a symmetrical composite; 5.11. Global stiffnesses for an asymmetrical laminate; 5.12. Examples of global stiffness matrices; 5.13. Boundary conditions; 5.14. Determination of transverse shear stresses; 5.15. Strain energy; Chapter 6. Symmetrical orthotropic Kirchhoff-Love plates; 6.1 . Introduction; 6.2. Global plate equations; 6.3. Plate loaded in the mean plane; 6.4. Plate loaded transversely; 6.5. Flexure of a rectangular plate simply supported around its edge
- 6.6. Free vibrations of a rectangular plate freely supported at its edge6.7. Buckling of a rectangular plate simply supported at its edge; Chapter 7. Thermo-elastic behaviour of composites; 7.1. Introduction; 7.2. Constitutive relation for an orthotropic material; 7.3. Constitutive relation when the normal transverse stress is zero; 7.4. Global cohesion forces; 7.5. Global composite constitutive relation; 7.6. Decoupling; 7.7. Balanced symmetrical composite loaded in the mean plane; Chapter 8. Symmetrical orthotropic Reissner-Mindlin plates; 8.1. Introduction