Circle-valued Morse theory /
In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that top...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin ; New York :
De Gruyter,
©2006.
|
Colección: | De Gruyter studies in mathematics ;
32. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface; Introduction; Part 1Morse functions and vector fieldson manifolds; CHAPTER 1Vector fields and C0 topology; CHAPTER 2Morse functions and their gradients; CHAPTER 3Gradient flows of real-valued Morse functions; CHAPTER 4The Kupka-Smale transversality theory forgradient flows; CHAPTER 5Handles; CHAPTER 6The Morse complex of a Morse function; History and Sources; Part 3Cellular gradients.; CHAPTER 7Condition (C); CHAPTER 8Cellular gradients are C0-generic; CHAPTER 9Properties of cellular gradients; Sources; Part 4Circle-valued Morse maps and Novikov complexes.