Cargando…

An introduction to the geometry of stochastic flows /

This book aims to provide a self-contained introduction to the local geometry of the stochastic flows. It studies the hypoelliptic operators, which are written in Hörmander's form, by using the connection between stochastic flows and partial differential equations. The book stresses the author...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Baudoin, Fabrice
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Imperial College Press, ©2004.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn232159992
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 050414s2004 enka ob 001 0 eng d
040 |a IOD  |b eng  |e pn  |c IOD  |d CUY  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d OCLCQ  |d DKDLA  |d ADU  |d E7B  |d OCLCQ  |d MERUC  |d OCLCO  |d OCLCQ  |d NTE  |d OCLCF  |d OCLCQ  |d OCLCA  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFBR  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d OCLCQ  |d AU@  |d M8D  |d UKAHL  |d HS0  |d OCLCQ  |d K6U  |d LEAUB  |d UKCRE  |d OCLCQ  |d OCLCO  |d OCLCQ 
016 7 |a 013176418  |2 Uk 
019 |a 71278372  |a 150388642  |a 481302571  |a 614988680  |a 648232171  |a 722568058  |a 888790392  |a 961575606  |a 962612536  |a 988480713  |a 991937420  |a 1037783415  |a 1038695258  |a 1055387384  |a 1064760197  |a 1081225732  |a 1086434204  |a 1153557366 
020 |a 1860947263  |q (electronic bk.) 
020 |a 9781860947261  |q (electronic bk.) 
020 |a 9781860944819 
020 |a 1860944817 
020 |z 1860944817 
029 1 |a AU@  |b 000049163344 
029 1 |a AU@  |b 000051374420 
029 1 |a AU@  |b 000053248038 
029 1 |a DEBBG  |b BV043128081 
029 1 |a DEBSZ  |b 422257478 
029 1 |a GBVCP  |b 802594255 
029 1 |a NZ1  |b 14237453 
035 |a (OCoLC)232159992  |z (OCoLC)71278372  |z (OCoLC)150388642  |z (OCoLC)481302571  |z (OCoLC)614988680  |z (OCoLC)648232171  |z (OCoLC)722568058  |z (OCoLC)888790392  |z (OCoLC)961575606  |z (OCoLC)962612536  |z (OCoLC)988480713  |z (OCoLC)991937420  |z (OCoLC)1037783415  |z (OCoLC)1038695258  |z (OCoLC)1055387384  |z (OCoLC)1064760197  |z (OCoLC)1081225732  |z (OCoLC)1086434204  |z (OCoLC)1153557366 
050 4 |a QA274.2  |b .B38 2004eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 22 
049 |a UAMI 
100 1 |a Baudoin, Fabrice. 
245 1 3 |a An introduction to the geometry of stochastic flows /  |c Fabrice Baudoin. 
260 |a London :  |b Imperial College Press,  |c ©2004. 
300 |a 1 online resource (x, 140 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Preface; Contents; Chapter 1 Formal Stochastic Differential Equations; Chapter 2 Stochastic Differential Equations and Carnot Groups; Chapter 3 Hypoelliptic Flows; Appendix A Basic Stochastic Calculus; Appendix B Vector Fields, Lie Groups and Lie Algebras; Bibliography; Index. 
520 |a This book aims to provide a self-contained introduction to the local geometry of the stochastic flows. It studies the hypoelliptic operators, which are written in Hörmander's form, by using the connection between stochastic flows and partial differential equations. The book stresses the author's view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry, and its main tools are introduced throughou. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Stochastic geometry. 
650 0 |a Flows (Differentiable dynamical systems) 
650 0 |a Stochastic differential equations. 
650 6 |a Géométrie stochastique. 
650 6 |a Flots (Dynamique différentiable) 
650 6 |a Équations différentielles stochastiques. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Flows (Differentiable dynamical systems)  |2 fast  |0 (OCoLC)fst00927917 
650 7 |a Stochastic differential equations.  |2 fast  |0 (OCoLC)fst01133506 
650 7 |a Stochastic geometry.  |2 fast  |0 (OCoLC)fst01133509 
776 0 8 |i Print version:  |a Baudoin, Fabrice.  |t Introduction to the geometry of stochastic flows.  |d London : Imperial College Press, ©2004  |z 1860944817  |w (DLC) 2005279214  |w (OCoLC)57667691 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=167310  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24682982 
938 |a EBSCOhost  |b EBSC  |n 167310 
938 |a YBP Library Services  |b YANK  |n 2468128 
994 |a 92  |b IZTAP