Cargando…

Linear models : an integrated approach /

Linear Models: An Integrated Approach aims to provide a clearand deep understanding of the general linear model using simplestatistical ideas. Elegant geometric arguments are also invoked asneeded and a review of vector spaces and matrices is provided to makethe treatment self-contained.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sengupta, Debasis
Otros Autores: Jammalamadaka, S. Rao
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, N.J. : World Scientific, ©2003.
Colección:Series on multivariate analysis ; v. 6.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn228136576
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 050429s2003 njua ob 001 0 eng d
010 |a  2005297683 
040 |a Nz  |b eng  |e pn  |c UV0  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d E7B  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCF  |d I9W  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AZK  |d OCLCQ  |d COCUF  |d LVT  |d AGLDB  |d MOR  |d PIFBR  |d OCLCQ  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d OCLCQ  |d G3B  |d AU@  |d UKAHL  |d OCLCQ  |d UKCRE  |d OCLCQ  |d OCLCO  |d MHW  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 61048677  |a 646735464  |a 961551364  |a 962567504  |a 972013856  |a 988464460  |a 992086649  |a 1037725922  |a 1038601329  |a 1045516419  |a 1055340729  |a 1062890101  |a 1081210291  |a 1153486423  |a 1228581193 
020 |a 981256490X  |q (electronic bk.) 
020 |a 9789812564900  |q (electronic bk.) 
020 |a 9789810245924 
020 |a 9810245920 
020 |z 9810245920 
029 0 |a NZ1  |b 12037370 
029 1 |a AU@  |b 000049163084 
029 1 |a AU@  |b 000051378693 
029 1 |a DEBBG  |b BV043138411 
029 1 |a DEBSZ  |b 422316601 
029 1 |a GBVCP  |b 802572103 
035 |a (OCoLC)228136576  |z (OCoLC)61048677  |z (OCoLC)646735464  |z (OCoLC)961551364  |z (OCoLC)962567504  |z (OCoLC)972013856  |z (OCoLC)988464460  |z (OCoLC)992086649  |z (OCoLC)1037725922  |z (OCoLC)1038601329  |z (OCoLC)1045516419  |z (OCoLC)1055340729  |z (OCoLC)1062890101  |z (OCoLC)1081210291  |z (OCoLC)1153486423  |z (OCoLC)1228581193 
050 4 |a QA279  |b .S46 2003eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.5  |2 22 
049 |a UAMI 
100 1 |a Sengupta, Debasis. 
245 1 0 |a Linear models :  |b an integrated approach /  |c Debasis Sengupta, Sreenivasa Rao Jammalamadaka. 
260 |a River Edge, N.J. :  |b World Scientific,  |c ©2003. 
300 |a 1 online resource (xxi, 622 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Series on multivariate analysis ;  |v vol. 6 
504 |a Includes bibliographical references (pages 587-606) and index. 
588 0 |a Print version record. 
520 |a Linear Models: An Integrated Approach aims to provide a clearand deep understanding of the general linear model using simplestatistical ideas. Elegant geometric arguments are also invoked asneeded and a review of vector spaces and matrices is provided to makethe treatment self-contained. 
505 0 |a Ch. 1. Introduction. 1.1. The linear model. 1.2. Why a linear model? 1.3. Description of the linear model and notations. 1.4. Scope of the linear model. 1.5. Related models. 1.6. Uses of the linear model. 1.7. A tour through the rest of the book. 1.8. Exercises -- ch. 2. Review of linear algebra. 2.1. Matrices and vectors. 2.2. Inverses and generalized inverses. 2.3. Vector space and projection. 2.4. Column space. 2.5. Matrix decompositions. 2.6. Löwner order. 2.7. Solution of linear equations. 2.8. Optimization of quadratic forms and functions. 2.9 Exercises -- ch. 3. Review of statistical results. 3.1. Covariance adjustment. 3.2. Basic distributions. 3.3. Distribution of quadratic forms. 3.4. Regression. 3.5. Basic concepts of inference. 3.6. Point estimation. 3.7. Bayesian estimation. 3.8. Tests of hypotheses. 3.9. Confidence region. 3.10. Exercises -- ch. 4. Estimation in the linear model. 4.1. Linear estimation: some basic facts. 4.2. Least squares estimation. 4.3. Best linear unbiased estimation. 4.4. Maximum likelihood estimation. 4.5. Fitted value, residual and leverage. 4.6. Dispersions. 4.7. Estimation of error variance and canonical decompositions. 4.8. Reparametrization. 4.9. Linear restrictions. 4.10. Nuisance parameters. 4.11. Information matrix and Cramer-Rao bound. 4.12. Collinearity in the linear model. 4.13. Exercises -- ch. 5. Further inference in the linear model. 5.1. Distribution of the estimators. 5.2. Confidence regions. 5.3. Tests of linear hypotheses. 5.4. Prediction in the linear model. 5.5. Consequences of collinearity. 5.6. Exercises -- ch. 6. Analysis of variance in basic designs. 6.1. Optimal design. 6.2. One-way classified data. 6.3. Two-way classified data. 6.4. Multiple treatment/block factors. 6.5. Nested models. 6.6. Analysis of covariance. 6.7. Exercises. 
505 8 |a Ch. 7. General linear model. 7.1. Why study the singular model? 7.2. Special considerations with singular models. 7.3. Best linear unbiased estimation. 7.4. Estimation of error variance. 7.5. Maximum likelihood estimation. 7.6. Weighted least squares estimation. 7.7. Some recipes for obtaining the BLUE. 7.8. Information matrix and Cramer-Rao bound. 7.9. Effect of linear restrictions. 7.10. Model with nuisance parameters. 7.11. Tests of hypotheses. 7.12. Confidence regions. 7.13. Prediction. 7.14. Exercises -- ch. 8. Misspecified or unknown dispersion. 8.1. Misspecified dispersion matrix. 8.2. Unknown dispersion: the general case. 8.3. Mixed effects and variance components. 8.4. Other special cases with correlated error. 8.5. Special cases with uncorrelated error. 8.6. Some problems of signal processing. 8.7. Exercises -- ch. 9. Updates in the general linear model. 9.1. Inclusion of observations. 9.2. Exclusion of observations. 9.3. Exclusion of explanatory variables. 9.4. Inclusion of explanatory variables. 9.5. Data exclusion and variable inclusion. 9.6. Exercises -- ch. 10. Multivariate linear model. 10.1. Description of the multivariate linear model. 10.2. Best linear unbiased estimation. 10.3. Unbiased estimation of error dispersion. 10.4. Maximum likelihood estimation. 10.5. Effect of linear restrictions. 10.6. Tests of linear hypotheses. 10.7. Linear prediction and confidence regions. 10.8. Applications. 10.9. Exercises -- ch. 11. Linear inference -- other perspectives. 11.1. Foundations of linear inference. 11.2. Admissible, Bayes and minimax linear estimators. 11.3. Biased estimators with smaller dispersion. 11.4. Other linear estimators. 11.5. A geometric view of BLUE in the linear model. 11.6. Large sample properties of estimators. 11.7. Exercises. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Linear models (Statistics) 
650 0 |a Analysis of covariance. 
650 0 |a Regression analysis. 
650 2 |a Regression Analysis 
650 6 |a Analyse de covariance. 
650 6 |a Analyse de régression. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Analysis of covariance  |2 fast 
650 7 |a Linear models (Statistics)  |2 fast 
650 7 |a Regression analysis  |2 fast 
700 1 |a Jammalamadaka, S. Rao. 
776 0 8 |i Print version:  |a Sengupta, Debasis.  |t Linear models.  |d River Edge, N.J. : World Scientific, ©2003  |w (DLC) 2005297683 
830 0 |a Series on multivariate analysis ;  |v v. 6. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=135173  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21190650 
938 |a ebrary  |b EBRY  |n ebr10085575 
938 |a EBSCOhost  |b EBSC  |n 135173 
938 |a YBP Library Services  |b YANK  |n 2405964 
994 |a 92  |b IZTAP