A first course in fourier analysis /
"This unique book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mat...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Cambridge University Press,
2007.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Part 1. The mathematical core. Chapter 1. Fourier's representation for functions on R, Tp, Z, and PN. 1.1. Synthesis and analysis equations ; 1.2. Examples of Fourier's representation ; 1.3. The Parseval identities and related results ; 1.4. The Fourier-Poisson cube ; 1.5. The validity of Fourier's representation ; Chapter 2. Convolution of functions on R, Tp, Z, and PN. 2.1. Formal definitions of f * g, F x g ; 2.2. Computation of f * g ; 2.3. Mathematical properties of the convolution product ; 2.4. Examples of convolution and correlation ; Further reading ; Exercises ; Chapter 3. The calculus for finding Fourier transformations of functions on R. 3.1. Using the definition to find Fourier transformations ; 3.2. Rules for finding Fourier transformations ; 3.3. Selected applications of the Fourier transform calculus ; Further reading ; Exercises ; Chapter 4. The calculus for finding Fourier transforms of functions of Tp, Z, and PN. 4.1. Fourier series ; 4.2. Selected applications of Fourier series ; 4.3. Discrete Fourier transformations ; 4.4. Selected applications of the DFT calculus ; Further reading ; Exercises ; Chapter 5. Operator identities associated with Fourier analysis ; 5.1. the concept of an operator identity ; 5.2. Operators generated by powers of F ; 5.3. Operators related to complex conjugation ; 5.4. Fourier transforms of operators ; 5.5. Rules for Hartley transforms ; 5.6. Hilbert transforms ; Further reading ; Exercises ; Chapter 6. The fact Fourier transform. 6.1. Pre-FFT computation of the DFT ; 6.2. Deprivation of the FFT via DFT rules ; 6.3. The bit reversal permutation ; 6.4. Sparse matric factorization of F when N = 2m ; 6.5. Sparse matric factorization of H when N = 2m ; 6.6. Sparse matric factorization of F when N = P1P2 ... Pm ; 6.7. Kronecker product factorization of F ; Further reading ; Exercises ; Chapter 7. Generalized functions on R. 7.1. The concept of a generalized function ; 7.2. Common generalized functions ; 7.3. Manipulation of generalized functions ; 7.4. Derivatives and simple differential equations ; 7.5. The Fourier transform calculus for generalized functions ; 7.6. Limits of generalized functions ; 7.7. Periodic generalized functions ; 7.8. Alternative definitions for generalized functions ; Further reading ; Exercises
- Part 2. Selected applications. Chapter 8. Sampling. 8.1. Sampling and interpolation ; 8.2. Reconstruction of f from its samples ; 8.3. Reconstruction of f from samples of a1 * f, a2 * f ... ; 8.4. Approximation of almost bandlimited functions ; Further reading ; Exercises ; Chapter 9. Partial differential equations. 9.1. Introduction ; 9.2. The wave equation ; 9.3. The diffusion equation ; 9.4. The diffraction equation ; 9.5. Fast computation of frames for movies ; Further reading ; Exercises ; Chapter 10. Wavelets. 10.1. The Haar wavelets ; 10.2. Support-limited wavelets ; 10.3. Analysis and synthesis with Daubechies wavelets ; 10.4. Filter banks ; Further reading ; Exercises ; Chapter 11. Musical tones. 11.1. Basic concepts ; 11.2. Spectrograms ; 11.3. Additive synthesis of tones ; 11.4. FM synthesis of tones ; 11.5. Synthesis of tones from noise ; 11.6. Music with mathematical structure ; Further reading ; Exercises ; Chapter 12. Probability. 12.1. Probability density functions of R ; 12.2. Some mathematical tools ; 12.3. The characteristic function ; 12.4. Random variables ; 12.5. The central limit theorem ; Further reading ; Exercises
- Appendices. Appendix 1. The impact of Fourier analysis ; Appendix 2. Functions and their Fourier transforms ; Appendix 3. The Fourier transform calculus ; Appendix 4. Operators and their Fourier transforms ; Appendix 5. The Whittaker-Robinson flow chart for harmonic analysis ; Appendix 6. FORTRAN code for a randix 2 FFT ; Appendix 7. The standard normal probability distribution ; Appendix 8. Frequencies of the piano keyboard.