Cargando…

Multiparametric statistics /

This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Serdobolskii, V.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Oxford : Elsevier, ©2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn190762906
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 070329s2008 ne ob 001 0 eng d
040 |a UK-RwCLS  |b eng  |e pn  |c DLC  |d OPELS  |d OCLCQ  |d DEBSZ  |d N$T  |d YDXCP  |d EBLCP  |d E7B  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OPELS  |d OCLCQ  |d REDDC  |d OCLCQ  |d UKMGB  |d DKDLA  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d COCUF  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d D6H  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d JBG  |d OCLCQ  |d OCLCO  |d UAB  |d OCLCQ  |d M8D  |d OCLCO  |d OCLCQ 
016 7 |a 013708954  |2 Uk 
019 |a 228148471  |a 299750903  |a 647691907  |a 871968721  |a 961678129  |a 962622423  |a 1256302633 
020 |a 0080555926  |q (electronic bk.) 
020 |a 9780444530493 
020 |a 0444530495 
020 |a 9780080555928  |q (electronic bk.) 
020 |z 0444530495  |q (Cloth) 
029 1 |a AU@  |b 000043178532 
029 1 |a AU@  |b 000043988015 
029 1 |a AU@  |b 000051554623 
029 1 |a CHNEW  |b 001007377 
029 1 |a DEBBG  |b BV036962170 
029 1 |a DEBBG  |b BV042307026 
029 1 |a DEBBG  |b BV043044430 
029 1 |a DEBSZ  |b 305939211 
029 1 |a DEBSZ  |b 422157066 
029 1 |a DEBSZ  |b 430461542 
029 1 |a DEBSZ  |b 44910849X 
029 1 |a NLGGC  |b 380805596 
029 1 |a NZ1  |b 12541685 
029 1 |a NZ1  |b 14540490 
029 1 |a NZ1  |b 15190167 
035 |a (OCoLC)190762906  |z (OCoLC)228148471  |z (OCoLC)299750903  |z (OCoLC)647691907  |z (OCoLC)871968721  |z (OCoLC)961678129  |z (OCoLC)962622423  |z (OCoLC)1256302633 
037 |a 109629  |b MIL 
042 |a lccopycat 
050 4 |a QA278  |b .S47 2008eb 
072 7 |a MAT  |x 029020  |2 bisacsh 
082 0 4 |a 519.5/35  |2 22 
049 |a UAMI 
100 1 |a Serdobolskii, V. 
245 1 0 |a Multiparametric statistics /  |c Vadim I. Serdobolskii. 
260 |a Amsterdam ;  |a Oxford :  |b Elsevier,  |c ©2008. 
300 |a 1 online resource (xvii, 315 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from e-book title screen (viewed January 16, 2008). 
504 |a Includes bibliographical references and index. 
505 0 |a Foreword -- Preface -- Chapter 1. Introduction: The Development of Multiparametric Statistics -- Chapter 2. Fundamental Problem of Statistics -- Chapter 3. Spectral Theory of Large Sample Covariance Matrices -- Chapter 4. Asymptitically Unimprovable Solution of Multivariate Problems -- Chapter 5. Multiparametric Discriminant Analysis -- Chapter 6. Theory of Solution to High-Order Systems of Empirical Linear Algebraic Equations -- Appendix -- References -- Index. 
520 |a This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters. This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution. Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations. In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book. This monograph will be of interest to a variety of specialists working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions. A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science. - Presents original mathematical investigations and open a new branch of mathematical statistics - Illustrates a technique for developing always stable and efficient versions of multivariate statistical analysis for large-dimensional problems - Describes the most popular methods some near exact solutions; including algorithms of non-degenerating large-dimensional discriminant and regression analysis 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Multivariate analysis. 
650 6 |a Analyse multivariée. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Multivariate Analysis.  |2 bisacsh 
650 7 |a Multivariate analysis.  |2 fast  |0 (OCoLC)fst01029105 
776 0 8 |i Print version:  |a Serdobolskii, V.  |t Multiparametric statistics.  |d Amsterdam ; Oxford : Elsevier, ©2008  |w (DLC) 2009659305 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=214777  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10204240 
938 |a EBSCOhost  |b EBSC  |n 214777 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 109629 
938 |a YBP Library Services  |b YANK  |n 2754830 
994 |a 92  |b IZTAP