Cargando…

The analytics of risk model validation /

Risk model validation is an emerging and important area of research, and has arisen because of Basel I and II. These regulatory initiatives require trading institutions and lending institutions to compute their reserve capital in a highly analytic way, based on the use of internal risk models. It is...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Christodoulakis, George, Satchell, Stephen, 1949-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier/Academic Press, 2008.
Edición:1st ed.
Colección:Elsevier finance.
Quantitative finance series.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn182815870
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 071205s2008 ne ob 001 1 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d CDX  |d IDEBK  |d E7B  |d OCLCQ  |d B24X7  |d DEBBG  |d OCLCQ  |d OCLCO  |d OCLCQ  |d UMI  |d OCLCQ  |d UKDOC  |d OCLCO  |d TEFOD  |d DEBSZ  |d OCLCQ  |d OCLCO  |d TEFOD  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCA  |d U3W  |d OCLCF  |d JBG  |d STF  |d WRM  |d VNS  |d OCLCQ  |d VTS  |d NRAMU  |d AU@  |d OCLCQ  |d UKMGB  |d UWO  |d OCLCQ  |d UAB  |d OCLCQ  |d OCLCO  |d M8D  |d OCLCO  |d OCLCQ  |d KSU  |d QGK  |d OCLCQ  |d OCLCA  |d OCLCO 
016 7 |a 017548963  |2 Uk 
019 |a 182732381  |a 244320017  |a 648331148  |a 712977154  |a 827279477  |a 827924652  |a 1069458076  |a 1259180849 
020 |a 9780080553887  |q (electronic bk.) 
020 |a 0080553885  |q (electronic bk.) 
020 |a 6611071504  |q (electronic bk.) 
020 |a 9786611071509 
020 |a 1281071501 
020 |a 9781281071507 
020 |z 0750681586  |q (Cloth) 
020 |z 9780750681582 
024 3 |a 9786611071509  |q (electronic bk.) 
029 1 |a AU@  |b 000051555625 
029 1 |a AU@  |b 000053283286 
029 1 |a AU@  |b 000059268763 
029 1 |a CDX  |b 6609793 
029 1 |a DEBBG  |b BV039829983 
029 1 |a DEBBG  |b BV043123949 
029 1 |a DEBSZ  |b 422163929 
029 1 |a GBVCP  |b 802396216 
029 1 |a UKMGB  |b 017548963 
035 |a (OCoLC)182815870  |z (OCoLC)182732381  |z (OCoLC)244320017  |z (OCoLC)648331148  |z (OCoLC)712977154  |z (OCoLC)827279477  |z (OCoLC)827924652  |z (OCoLC)1069458076  |z (OCoLC)1259180849 
037 |a CL0500000185  |b Safari Books Online 
037 |a 960FD08F-F36E-4991-A86C-AE1152E04D03  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a HD61  |b .A53 2008eb 
050 4 |a HG 
082 0 4 |a 658.155015118  |2 22 
049 |a UAMI 
245 0 4 |a The analytics of risk model validation /  |c edited by George Christodoulakis, Stephen Satchell. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier/Academic Press,  |c 2008. 
300 |a 1 online resource (1 volume) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Elsevier finance 
490 1 |a Quantitative finance series 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; The Analytics of Risk Model Validation; Copyright Page; Table of Contents; About the editors; About the contributors; Preface; Chapter 1 Determinants of small business default; Abstract; 1. Introduction; 2. Data, methodology and summary statistics; 3. Empirical results of small business default; 4. Conclusion; References; Notes; Chapter 2 Validation of stress testing models; Abstract; 1. Why stress test?; 2. Stress testing basics; 3. Overview of validation approaches; 4. Subsampling tests; 5. Ideal scenario validation; 6. Scenario validation; 7. Cross-segment validation. 
505 8 |a 8. Back-casting9. Conclusions; References; Chapter 3 The validity of credit risk model validation methods; Abstract; 1. Introduction; 2. Measures of discriminatory power; 3. Uncertainty in credit risk model validation; 4. Confidence interval for ROC; 5. Bootstrapping; 6. Optimal rating combinations; 7. Concluding remarks; References; Chapter 4 A moments-based procedure for evaluating risk forecasting models; Abstract; 1. Introduction; 2. Preliminary analysis; 3. The likelihood ratio test; 4. A moments test of model adequacy; 5. An illustration; 6. Conclusions; 7. Acknowledgements; References. 
505 8 |a NotesAppendix; 1. Error distribution; 2. Two-piece normal distribution; 3. t-Distribution; 4. Skew-t distribution; Chapter 5 Measuring concentration risk in credit portfolios; Abstract; 1. Concentration risk and validation; 2. Concentration risk and the IRB model; 3. Measuring name concentration; 4. Measuring sectoral concentration; 5. Numerical example; 6. Future challenges of concentration risk measurement; 7. Summary; References; Notes; Appendix A.1: IRB risk weight functions and concentration risk; Appendix A.2: Factor surface for the diversification factor; Appendix A.3. 
505 8 |a Chapter 6 A simple method for regulators to cross-check operational risk loss models for banksAbstract; 1. Introduction; 2. Background; 3. Cross-checking procedure; 4. Justification of our approach; 5. Justification for a lower bound using the lognormal distribution; 6. Conclusion; References; Chapter 7 Of the credibility of mapping and benchmarking credit risk estimates for internal rating systems; Abstract; 1. Introduction; 2. Why does the portfolio's structure matter?; 3. Credible credit ratings and credible credit risk estimates; 4. An empirical illustration; 5. Credible mapping. 
505 8 |a 6. Conclusions7. Acknowledgements; References; Appendix; 1. Further elements of modern credibility theory; 2. Proof of the credibility fundamental relation; 3. Mixed Gamma-Poisson distribution and negative binomial; 4. Calculation of the Bühlmann credibility estimate under the Gamma-Poisson model; 5. Calculation of accuracy ratio; Chapter 8 Analytic models of the ROC curve: Applications to credit rating model validation; Abstract; 1. Introduction; 2. Theoretical implications and applications; 3. Choices of distributions; 4. Performance evaluation on the AUROC estimation with simulated data. 
520 |a Risk model validation is an emerging and important area of research, and has arisen because of Basel I and II. These regulatory initiatives require trading institutions and lending institutions to compute their reserve capital in a highly analytic way, based on the use of internal risk models. It is part of the regulatory structure that these risk models be validated both internally and externally, and there is a great shortage of information as to best practise. Editors Christodoulakis and Satchell collect papers that are beginning to appear by regulators, consultants, and academics, to prov. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Risk management  |x Mathematical models. 
650 0 |a Operational risk  |x Mathematical models. 
650 6 |a Gestion du risque  |x Modèles mathématiques. 
650 6 |a Risque opérationnel  |x Modèles mathématiques. 
650 7 |a Risk management  |x Mathematical models  |2 fast 
700 1 |a Christodoulakis, George. 
700 1 |a Satchell, Stephen,  |d 1949- 
776 0 8 |i Print version:  |t Analytics of risk model validation.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier/Academic Press, 2008  |z 9780750681582  |z 0750681586  |w (OCoLC)166334186 
830 0 |a Elsevier finance. 
830 0 |a Quantitative finance series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=211526  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780750681582/?ar  |z Texto completo 
938 |a 123Library  |b 123L  |n 35078 
938 |a Books 24x7  |b B247  |n bkf00028070 
938 |a Coutts Information Services  |b COUT  |n 6609793 
938 |a ebrary  |b EBRY  |n ebr10206015 
938 |a EBSCOhost  |b EBSC  |n 211526 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 107150 
938 |a YBP Library Services  |b YANK  |n 2737770 
994 |a 92  |b IZTAP