Associative functions : triangular norms and copulas /
The dynamics of complex systems can clarify the creation of structures in Nature. This creation is driven by the collective interaction of constitutive elements of the system. Such interactions are frequently nonlinear and are directly responsible for the lack of prediction in the evolution process....
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hackensack, NJ :
World Scientific,
©2006.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Special symbols
- 1. Introduction. 1.1. Historical notes. 1.2. Preliminaries. 1.3. t-norms and s-norms. 1.4. Copulas
- 2. Representation theorems for associative functions. 2.1. Continuous, Archimedean t-norms. 2.2. Additive and multiplicative generators. 2.3. Extension to arbitrary closed intervals. 2.4. Continuous, non-Archimedean t-norms. 2.5. Non-continuous t-norms. 2.6. Families of t-norms. 2.7. Other representation theorems. 2.8. Related functional equations
- 3. Functional equations involving t-norms. 3.1. Simultaneous associativity. 3.2. n-duality. 3.3. Simple characterizations of Min. 3.4. Homogeneity. 3.5. Distributivity. 3.6. Conical t-norms. 3.7. Rational Archimedean t-norms. 3.8. Extension and sets of uniqueness
- 4. Inequalities involving t-norms. 4.1. Notions of concavity and convexity. 4.2. The dominance relation. 4.3. Uniformly close associative functions. 4.4. Serial iterates and n-copulas. 4.5. Positivity.