Cargando…

Random fields estimation /

This book contains a novel theory of random fields estimation of Wiener type, developed originally by the author and presented here. No assumption about the Gaussian or Markovian nature of the fields are made. The theory, constructed entirely within the framework of covariance theory, is based on a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ramm, A. G. (Alexander G.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, NJ : World Scientific, ©2005.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn182530762
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 060927s2005 nju ob 001 0 eng d
040 |a COCUF  |b eng  |e pn  |c COCUF  |d OCLCG  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d OCLCQ  |d DKDLA  |d ADU  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCO  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFBR  |d OCLCQ  |d WRM  |d VTS  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d LEAUB  |d JBG  |d UKAHL  |d VLY  |d OCLCQ  |d OCLCO  |d M8D  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 77731597  |a 148811683  |a 473096591  |a 482675692  |a 614965400  |a 648231060  |a 722567440  |a 748531008  |a 815746178  |a 888731368  |a 961552888  |a 962682396  |a 1162533048  |a 1241883414  |a 1290073331  |a 1300509239 
020 |a 9812565361 
020 |a 9789812565365 
020 |a 9812703152  |q (electronic bk.) 
020 |a 9789812703156  |q (electronic bk.) 
020 |a 1281899143 
020 |a 9781281899149 
020 |a 9786611899141 
020 |a 6611899146 
029 1 |a AU@  |b 000051406538 
029 1 |a AU@  |b 000053245042 
029 1 |a DEBBG  |b BV043110375 
029 1 |a DEBSZ  |b 422238538 
029 1 |a GBVCP  |b 802388760 
029 1 |a NZ1  |b 12061878 
029 1 |a YDXCP  |b 2507574 
035 |a (OCoLC)182530762  |z (OCoLC)77731597  |z (OCoLC)148811683  |z (OCoLC)473096591  |z (OCoLC)482675692  |z (OCoLC)614965400  |z (OCoLC)648231060  |z (OCoLC)722567440  |z (OCoLC)748531008  |z (OCoLC)815746178  |z (OCoLC)888731368  |z (OCoLC)961552888  |z (OCoLC)962682396  |z (OCoLC)1162533048  |z (OCoLC)1241883414  |z (OCoLC)1290073331  |z (OCoLC)1300509239 
050 4 |a QA274.45  |b .R348 2005eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a PBT  |2 bicssc 
082 0 4 |a 519.2  |2 22 
049 |a UAMI 
100 1 |a Ramm, A. G.  |q (Alexander G.) 
245 1 0 |a Random fields estimation /  |c Alexander G. Ramm. 
260 |a Hackensack, NJ :  |b World Scientific,  |c ©2005. 
300 |a 1 online resource (xiii, 373 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 363-369) and index. 
505 0 |a Cover -- Preface -- Contents -- 1. Introduction -- 2. Formulation of Basic Results -- 2.1 Statement of the problem -- 2.2 Formulation of the results (multidimensional case) -- 2.2.1 Basic results -- 2.2.2 Generalizations -- 2.3 Formulation of the results (one-dimensional case) -- 2.3.1 Basic results for the scalar equation -- 2.3.2 Vector equations -- 2.4 Examples of kernels of class R and solutions to the basic equation -- 2.5 Formula for the error of the optimal estimate -- 3. Numerical Solution of the Basic Integral Equation in Distributions -- 3.1 Basic ideas -- 3.2 Theoretical approaches -- 3.3 Multidimensional equation -- 3.4 Numerical solution based on the approximation of the kernel -- 3.5 Asymptotic behavior of the optimal filter as the white noise component goes to zero -- 3.6 A general approach -- 4. Proofs -- 4.1 Proof of Theorem 2.1 -- 4.2 Proof of Theorem 2.2 -- 4.3 Proof of Theorems 2.4 and 2.5 -- 4.4 Another approach -- 5. Singular Perturbation Theory for a Class of Fredholm Integral Equations Arising in Random Fields Estimation Theory -- 5.1 Introduction -- 5.2 Auxiliary results -- 5.3 Asymptotics in the case n = 1 -- 5.4 Examples of asymptotical solutions: case n = 1 -- 5.5 Asymptotics in the case n> 1 -- 5.6 Examples of asymptotical solutions: case n> 1 -- 6. Estimation and Scattering Theory -- 6.1 The direct scattering problem -- 6.1.1 The direct scattering problem -- 6.1.2 Properties of the scattering solution -- 6.1.3 Properties of the scattering amplitude -- 6.1.4 Analyticity in k of the scattering solution -- 6.1.5 High-frequency behavior of the scattering solutions -- 6.1.6 Fundamental relation between u+ and u- -- 6.1.7 Formula for det S (k) and state the Levinson Theorem -- 6.1.8 Completeness properties of the scattering solutions -- 6.2 Inverse scattering problems -- 6.2.1 Inverse scattering problems -- 6.2.2 Uniqueness theorem for the inverse scattering problem -- 6.2.3 Necessary conditions for a function to be a scatterng amplitude -- 6.2.4 A Marchenko equation (M equation) -- 6.2.5 Characterization of the scattering data in the 3D inverse scattering probtem -- 6.2.6 The Born inversion -- 6.3 Estimation theory and inverse scattering in R3 -- 7. Applications -- 7.1 What is the optimal size of the domain on which the data are to be collected? -- 7.2 Discrimination of random fields against noisy background -- 7.3 Quasioptimal estimates of derivatives of random functions -- 7.3.1 Introduction -- 7.3.2 Estimates of the derivatives -- 7.3.3 Derivatives of random functions -- 7.3.4 Finding critical points -- 7.3.5 Derivatives of random fields -- 7.4 Stable summation of orthogonal series and integrals with randomly perturbed coefficients -- 7.4.1 Introduction -- 7.4.2 Stable summation of series -- 7.4.3 Method of multipliers -- 7.5 Resolution ability of linear systems -- 7.5.1 Introduction -- 7.5.2 Resolution ability of linear systems -- 7.5.3 Optimization of resolution ability -- 7.5.4 A general definition of resolution ability -- 7.6 Ill-posed problems and estimation theory -- 7.6.1 Introduction -- 7.6.2 Stable solution of ill-posed problems -- 7.6.3 Equations with random noise -- 7.7 A remark on nonlinear (polynomial) estimates -- 8. Auxiliary Results -- 8.1 Sobolev spaces and distributions -- 8.1.1 A general imbedding theorem -- 8.1.2 Sobolev space. 
520 |a This book contains a novel theory of random fields estimation of Wiener type, developed originally by the author and presented here. No assumption about the Gaussian or Markovian nature of the fields are made. The theory, constructed entirely within the framework of covariance theory, is based on a detailed analytical study of a new class of multidimensional integral equations basic in estimation theory. This book is suitable for graduate courses in random fields estimation. It can also be used in courses in functional analysis, numerical analysis, integral equations, and scattering theory. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Random fields. 
650 0 |a Estimation theory. 
650 6 |a Champs aléatoires. 
650 6 |a Théorie de l'estimation. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Estimation theory  |2 fast 
650 7 |a Random fields  |2 fast 
700 1 |a Ramm, A. G.  |q (Alexander G.).  |t Random fields estimation theory. 
776 0 8 |i Print version:  |a Ramm, A.G. (Alexander G.).  |t Random fields estimation.  |d Hackensack, NJ : World Scientific, ©2005  |w (DLC) 2006299148 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=174689  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24683960 
938 |a ebrary  |b EBRY  |n ebr10173937 
938 |a EBSCOhost  |b EBSC  |n 174689 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 189914 
938 |a YBP Library Services  |b YANK  |n 2507574 
994 |a 92  |b IZTAP