A course in probability theory /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Academic Press,
©2001.
|
Edición: | 3rd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface to the third edition
- Preface to the second edition
- Preface to the first edition
- Chapter 1. Distribution function
- 1.1 Monotone functions
- 1.2 Distribution functions
- 1.3 Absolutely continuous and singular distributions
- Chapter 2. Measure theory
- 2.1 Classes of sets
- 2.2 Probability measures and their distribution functions
- Chapter 3. Random variable. Expectation. Independence
- 3.1 General definitions
- 3.2 Properties of mathematical expectation
- 3.3 Independence
- Chapter 4. Convergence concepts
- 4.1 Various modes of convergence
- 4.2 Almost sure convergence; Borel-Cantelli lemma
- 4.3 Vague convergence
- 4.4 Continuation
- 4.5 Uniform integrability; convergence of moments
- Chapter 5. Law of large numbers. Random series
- 5.1 Simple limit theorems
- 5.2 Weak law of large numbers
- 5.3 Convergence of series
- 5.4 Strong law of large numbers
- 5.5 Applications
- Bibliographical Note
- Chapter 6. Characteristic function
- 6.1 General properties; convolutions
- 6.2 Uniqueness and inversion
- 6.3 Convergence theorems
- 6.4 Simple applications
- 6.5 Representation theorems
- 6.6 Multidimensional case; Laplace transforms
- Bibliographical Note
- Chapter 7. Central limit theorem and its ramifications
- 7.1 Liapounov's theorem
- 7.2 Lindeberg-Feller theorem
- 7.3 Ramifications of the central limit theorem
- 7.4 Error estimation
- 7.5 Law of the iterated logarithm
- 7.6 Infinite divisibility
- Bibliographical Note
- Chapter 8. Random walk
- 8.1 Zero-or-one laws
- 8.2 Basic notions
- 8.3 Recurrence
- 8.4 Fine structure
- 8.5 Continuation
- Bibliographical Note
- Chapter 9. Conditioning. Markov property. Martingale
- 9.1 Basic properties of conditional expectation
- 9.2 Conditional independence; Markov property
- 9.3 Basic properties of smartingales
- 9.4 Inequalities and convergence
- 9.5 Applications
- Bibliographical Note
- Supplement: Measure and Integral
- 1 Construction of measure
- 2 Characterization of extensions
- 3 Measures in R
- 4 Integral
- 5 Applications
- General Bibliography
- Index
- Last Page