Cargando…

The Covering property Axiom, CPA : a combinatorial core of the iterated perfect set model /

Here the authors formulate and explore a new axiom of set theory, CPA, the Covering Property Axiom. CPA is consistent with the usual ZFC axioms, indeed it is true in the iterated Sacks model and actually captures the combinatorial core of this model. A plethora of results known to be true in the Sac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ciesielski, Krzysztof, 1957-
Otros Autores: Pawlikowski, Janusz, 1957-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2004.
Colección:Cambridge tracts in mathematics ; 164.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn173610091
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 040115s2004 enk ob 001 0 eng d
040 |a COCUF  |b eng  |e pn  |c COCUF  |d YDXCP  |d OCLCG  |d OCLCQ  |d N$T  |d AU@  |d OCLCQ  |d DKDLA  |d MERUC  |d CCO  |d E7B  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d COO  |d OCLCQ  |d OL$  |d MNU  |d CAMBR  |d OCLCQ  |d EBLCP  |d OCLCQ  |d AZK  |d CNNLC  |d LOA  |d CNNOR  |d MOR  |d PIFBR  |d ZCU  |d OCLCQ  |d U3W  |d UAB  |d STF  |d BRL  |d WRM  |d OCLCQ  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d G3B  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d MM9  |d UKAHL  |d AJS  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO 
016 7 |a 013021304  |2 Uk 
019 |a 70916499  |a 144525552  |a 171124195  |a 271787473  |a 478444251  |a 488329870  |a 560239643  |a 647520269  |a 668201027  |a 845016681  |a 888561918  |a 961512436  |a 962709867  |a 1037498366  |a 1172029712  |a 1180917556 
020 |a 0511212038 
020 |a 9780511212031 
020 |a 0521839203 
020 |a 9780521839204 
020 |a 0511217404  |q (electronic bk.) 
020 |a 9780511217401  |q (electronic bk.) 
020 |a 0511215614  |q (electronic bk.) 
020 |a 9780511215612  |q (electronic bk.) 
020 |a 0511546459  |q (electronic book) 
020 |a 9780511546457  |q (electronic book) 
020 |a 051131597X  |q (e-book) 
020 |a 9780511315978  |q (e-book) 
029 1 |a AU@  |b 000042831721 
029 1 |a AU@  |b 000053234248 
029 1 |a AU@  |b 000062568467 
029 1 |a DEBBG  |b BV044083866 
029 1 |a NZ1  |b 12046602 
035 |a (OCoLC)173610091  |z (OCoLC)70916499  |z (OCoLC)144525552  |z (OCoLC)171124195  |z (OCoLC)271787473  |z (OCoLC)478444251  |z (OCoLC)488329870  |z (OCoLC)560239643  |z (OCoLC)647520269  |z (OCoLC)668201027  |z (OCoLC)845016681  |z (OCoLC)888561918  |z (OCoLC)961512436  |z (OCoLC)962709867  |z (OCoLC)1037498366  |z (OCoLC)1172029712  |z (OCoLC)1180917556 
050 4 |a QA248  |b .C473 2004eb 
072 7 |a MAT  |x 028000  |2 bisacsh 
082 0 4 |a 511.3/22  |2 22 
049 |a UAMI 
100 1 |a Ciesielski, Krzysztof,  |d 1957- 
245 1 4 |a The Covering property Axiom, CPA :  |b a combinatorial core of the iterated perfect set model /  |c Krzysztof Ciesielski, Janusz Pawlikowski. 
260 |a Cambridge, UK ;  |a New York :  |b Cambridge University Press,  |c 2004. 
300 |a 1 online resource (xxi, 174 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Cambridge tracts in mathematics ;  |v 164 
504 |a Includes bibliographical references (pages 165-171) and index. 
588 0 |a Print version record. 
505 0 |a 1. Axiom CPA[subscript cube] and its consequences : properties (A)-(E) -- 2. Games and axiom CPA[subscript cube][superscript game] -- 3. Prisms and axioms CPA[subscript prism][superscript game] and CPA[subscript prism] -- 4. CPA[subscript prism] and coverings with smooth functions -- 5. Applications of CPA[subscript prism][superscript game] -- 6. CPA and properties (F[superscript *]) and (G) -- 7. CPA in the Sacks model. 
520 |a Here the authors formulate and explore a new axiom of set theory, CPA, the Covering Property Axiom. CPA is consistent with the usual ZFC axioms, indeed it is true in the iterated Sacks model and actually captures the combinatorial core of this model. A plethora of results known to be true in the Sacks model easily follow from CPA. Replacing iterated forcing arguments with deductions from CPA simplifies proofs, provides deeper insight, and leads to new results. One may say that CPA is similar in nature to Martin's axiom, as both capture the essence of the models of ZFC in which they hold. The exposition is self contained and there are natural applications to real analysis and topology. Researchers who use set theory in their work will find much of interest in this book. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Axiomatic set theory. 
650 0 |a Set theory. 
650 6 |a Théorie axiomatique des ensembles. 
650 6 |a Théorie des ensembles. 
650 7 |a MATHEMATICS  |x Set Theory.  |2 bisacsh 
650 7 |a Axiomatic set theory  |2 fast 
650 7 |a Set theory  |2 fast 
700 1 |a Pawlikowski, Janusz,  |d 1957- 
776 0 8 |i Print version:  |a Ciesielski, Krzysztof, 1957-  |t Covering property Axiom, CPA.  |d Cambridge, UK ; New York : Cambridge University Press, 2004  |w (DLC) 2004040788 
830 0 |a Cambridge tracts in mathematics ;  |v 164. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=164388  |z Texto completo 
936 |a BATCHLOAD 
938 |a Internet Archive  |b INAR  |n coveringproperty0000cies 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13423217 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37558608 
938 |a EBL - Ebook Library  |b EBLB  |n EBL266656 
938 |a ebrary  |b EBRY  |n ebr10131719 
938 |a EBSCOhost  |b EBSC  |n 164388 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 54058 
938 |a YBP Library Services  |b YANK  |n 2462774 
938 |a YBP Library Services  |b YANK  |n 3276200 
938 |a YBP Library Services  |b YANK  |n 2592210 
994 |a 92  |b IZTAP