Heegner points and Rankin L-series /
The seminal formula of Gross and Zagier relating heights of Heegner points to derivatives of the associated Rankin L-series has led to many generalisations and extensions in a variety of different directions, spawning a fertile area of study that remains active to this day. This volume, based on a w...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; New York, NY, USA :
Cambridge University Press,
©2004.
|
Colección: | Mathematical Sciences Research Institute publications ;
49. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-title
- Series-title
- Title
- Copyright
- Contents
- Preface
- Heegner Points: The Beginnings
- 1. Prologue: The Opportune Arrival of Heegner Points
- 2. Prehistory
- 3. Heegner
- 4. Simplification and Generalisation
- 5. 1982
- References
- Correspondence
- Gross to Birch: March 1, 1982
- Birch to Gross: May 6, 1982
- Gross to Birch: May 14, 1982
- Birch to Gross: around September 6, 1982
- Gross to Birch: September 17, 1982
- Gross to Birch: December 1, 1982
- Birch to Gross: December 27, 1982.
- The Gauss Class Number Problem for Imaginary Quadratic Fields
- 1. Introduction
- 2. The Deuring-Heilbronn Phenomenon
- 3. Existence of L-functions of Elliptic Curves with Triple Zeros
- 4. Solution of the Class Number One Problem
- Acknowledgment
- References
- Heegner Points and Representation Theory
- 1. Heegner Points on X0(N)
- 2. Rankin L-Series and a Height Formula
- 3. Starting from the L-Function
- 4. Local Representation Theory
- 5. Unitary Similitudes
- 6. The L-Group and Its Symplectic Representation
- 7. Inner Forms
- 8. Langlands Parameters
- 9. Local epsilon Factors.
- 10. Local Linear Forms
- 11. Local Test Vectors
- 12. An Explicit Local Formula
- 13. Ad grave accent lic Groups
- 14. A Special Case
- 15. Automorphic Representations
- 16. When #S Is Even
- 17. Global Test Vectors
- 18. An Explicit Global Formula
- 19. When #S Is Odd
- 20. Shimura Varieties
- 21. Nearby Quaternion Algebras
- 22. The Global Representation
- 23. The Global Linear Form
- 24. Global Test Vectors
- Acknowledgment
- References
- Gross-Zagier Revisited
- 1. Introduction
- 2. Some Properties of Abelian Schemes and Modular Curves.
- 3. The Serre-Tate Theorem and the Grothendieck Existence Theorem
- 4. Computing Naive Intersection Numbers
- 5. Intersection Formula Via Hom Groups
- 6. Supersingular Cases with r A(m) = 0
- 7. Application of a Construction of Serre
- 8. Intersection Theory Via Meromorphic Tensors
- 9. Self-Intersection Formula and Application to Global Height Pairings
- 10. Quaternionic Explications
- Appendix by W.R. Mann: Elimination of Quaternionic Sums
- References
- Special Value Formulae for Rankin L-Functions
- 1. Introduction
- 2. Notation and Hypotheses
- 3. Atkin-Lehner Theory on GL2.
- 4. Quaternion Algebras and the Jacquet-Langlands Correspondence
- 5. The Work of Waldspurger
- 6. Test Vectors: The Work of Gross and Prasad
- 7. The Work of Gross and Zhang
- References
- Gross-Zagier Formula for GL(2), II
- 1. Introduction and Notation
- 2. Automorphic Forms
- 3. Weights and Levels
- 4. Automorphic L-Series
- 5. Rankin-Selberg L-Series
- 6. The Odd Case
- 7. The Even Case
- 8. The Idea of Gross and Zagier
- 9. Calculus on Arithmetic Surfaces
- 10. Decomposition of Heights
- 11. Construction of the Kernels
- 12. Geometric Pairing.