|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn173523352 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
071001s2001 caua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d YDXCP
|d BTCTA
|d OCLCQ
|d CDX
|d E7B
|d IDEBK
|d OCLCQ
|d OCLCF
|d NLGGC
|d OCLCQ
|d AGLDB
|d OCLCQ
|d VTS
|d M8D
|d VLY
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 171133266
|a 178161214
|a 232311886
|a 648314815
|a 1162248701
|a 1241961707
|a 1300670180
|
020 |
|
|
|a 9780080549422
|q (electronic bk.)
|
020 |
|
|
|a 008054942X
|q (electronic bk.)
|
020 |
|
|
|a 1281028711
|
020 |
|
|
|a 9781281028716
|
020 |
|
|
|a 9786611028718
|
020 |
|
|
|a 6611028714
|
020 |
|
|
|z 0120725509
|q (Cloth)
|
029 |
1 |
|
|a AU@
|b 000054163047
|
029 |
1 |
|
|a CDX
|b 6484137
|
029 |
1 |
|
|a DEBBG
|b BV043071235
|
029 |
1 |
|
|a DEBSZ
|b 422184659
|
029 |
1 |
|
|a GBVCP
|b 802350496
|
035 |
|
|
|a (OCoLC)173523352
|z (OCoLC)171133266
|z (OCoLC)178161214
|z (OCoLC)232311886
|z (OCoLC)648314815
|z (OCoLC)1162248701
|z (OCoLC)1241961707
|z (OCoLC)1300670180
|
050 |
|
4 |
|a QA300
|b .B15 2001eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bagby, Richard J.
|
245 |
1 |
0 |
|a Introductory analysis :
|b a deeper view of calculus /
|c Richard J. Bagby.
|
260 |
|
|
|a San Diego :
|b Harcourt/Academic Press,
|c ©2001.
|
300 |
|
|
|a 1 online resource (xvi, 201 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (page 197) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Copyright Page; Contents; Acknowledgments; Preface; Chapter I. The Real Number System; 1. Familiar Number Systems; 2. Intervals; 3. Suprema and Infima; 4. Exact Arithmetic in R; 5. Topics for Further Study; Chapter II. Continuous Functions; 1. Functions in Mathematics; 2. Continuity of Numerical Functions; 3. The Intermediate Value Theorem; 4. More Ways to Form Continuous Functions; 5. Extreme Values; Chapter III. Limits; 1. Sequences and Limits; 2. Limits and Removing Discontinuities; 3. Limits Involving infinity; Chapter IV. The Derivative; 1. Differentiability
|
505 |
8 |
|
|a 2. Combining Differentiable Functions3. Mean Values; 4. Second Derivatives and Approximations; 5. Higher Derivatives; 6. Inverse Functions; 7. Implicit Functions and Implicit Differentiation; Chapter V. The Riemann Integral; 1. Areas and Riemann Sums; 2. Simplifying the Conditions for Integrability; 3. Recognizing Integrability; 4. Functions Defined by Integrals; 5. The Fundamental Theorem of Calculus; 6. Topics for Further Study; Chapter VI. Exponential and Logarithmic Functions; 1. Exponents and Logarithms; 2. Algebraic Laws as Definitions; 3. The Natural Logarithm
|
505 |
8 |
|
|a 4. The Natural Exponential Function5. An Important Limit; Chapter VII. Curves and Arc Length; 1. The Concept of Arc Length; 2. Arc Length and Integration; 3. Arc Length as a Parameter; 4. The Arctangent and Arcsine Functions; 5. The Fundamental Trigonometric Limit; Chapter VIII. Sequences and Series of Functions; 1. Functions Defined by Limits; 2. Continuity and Uniform Convergence; 3. Integrals and Derivatives; 4. Taylor's Theorem; 5. Power Series; 6. Topics for Further Study; Chapter IX. Additional Computational Methods; 1. L'Hôpital's Rule; 2. Newton's Method; 3. Simpson's Rule
|
505 |
8 |
|
|a 4. The Substitution Rule for IntegralsReferences; Index
|
520 |
|
|
|a Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstra.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
6 |
|a Analyse mathématique.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical analysis.
|2 fast
|0 (OCoLC)fst01012068
|
776 |
0 |
8 |
|i Print version:
|a Bagby, Richard J.
|t Introductory analysis.
|d San Diego : Harcourt/Academic Press, ©2001
|z 0120725509
|z 9780120725502
|w (DLC) 00103265
|w (OCoLC)45316258
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203257
|z Texto completo
|
938 |
|
|
|a Baker and Taylor
|b BTCP
|n BK0007476097
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 6484137
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10188249
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 203257
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 102871
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2614877
|
994 |
|
|
|a 92
|b IZTAP
|