Cargando…

Introductory analysis : a deeper view of calculus /

Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bagby, Richard J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Harcourt/Academic Press, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn173523352
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 071001s2001 caua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d BTCTA  |d OCLCQ  |d CDX  |d E7B  |d IDEBK  |d OCLCQ  |d OCLCF  |d NLGGC  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d M8D  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 171133266  |a 178161214  |a 232311886  |a 648314815  |a 1162248701  |a 1241961707  |a 1300670180 
020 |a 9780080549422  |q (electronic bk.) 
020 |a 008054942X  |q (electronic bk.) 
020 |a 1281028711 
020 |a 9781281028716 
020 |a 9786611028718 
020 |a 6611028714 
020 |z 0120725509  |q (Cloth) 
029 1 |a AU@  |b 000054163047 
029 1 |a CDX  |b 6484137 
029 1 |a DEBBG  |b BV043071235 
029 1 |a DEBSZ  |b 422184659 
029 1 |a GBVCP  |b 802350496 
035 |a (OCoLC)173523352  |z (OCoLC)171133266  |z (OCoLC)178161214  |z (OCoLC)232311886  |z (OCoLC)648314815  |z (OCoLC)1162248701  |z (OCoLC)1241961707  |z (OCoLC)1300670180 
050 4 |a QA300  |b .B15 2001eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 22 
049 |a UAMI 
100 1 |a Bagby, Richard J. 
245 1 0 |a Introductory analysis :  |b a deeper view of calculus /  |c Richard J. Bagby. 
260 |a San Diego :  |b Harcourt/Academic Press,  |c ©2001. 
300 |a 1 online resource (xvi, 201 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (page 197) and index. 
588 0 |a Print version record. 
505 0 |a Cover; Copyright Page; Contents; Acknowledgments; Preface; Chapter I. The Real Number System; 1. Familiar Number Systems; 2. Intervals; 3. Suprema and Infima; 4. Exact Arithmetic in R; 5. Topics for Further Study; Chapter II. Continuous Functions; 1. Functions in Mathematics; 2. Continuity of Numerical Functions; 3. The Intermediate Value Theorem; 4. More Ways to Form Continuous Functions; 5. Extreme Values; Chapter III. Limits; 1. Sequences and Limits; 2. Limits and Removing Discontinuities; 3. Limits Involving infinity; Chapter IV. The Derivative; 1. Differentiability 
505 8 |a 2. Combining Differentiable Functions3. Mean Values; 4. Second Derivatives and Approximations; 5. Higher Derivatives; 6. Inverse Functions; 7. Implicit Functions and Implicit Differentiation; Chapter V. The Riemann Integral; 1. Areas and Riemann Sums; 2. Simplifying the Conditions for Integrability; 3. Recognizing Integrability; 4. Functions Defined by Integrals; 5. The Fundamental Theorem of Calculus; 6. Topics for Further Study; Chapter VI. Exponential and Logarithmic Functions; 1. Exponents and Logarithms; 2. Algebraic Laws as Definitions; 3. The Natural Logarithm 
505 8 |a 4. The Natural Exponential Function5. An Important Limit; Chapter VII. Curves and Arc Length; 1. The Concept of Arc Length; 2. Arc Length and Integration; 3. Arc Length as a Parameter; 4. The Arctangent and Arcsine Functions; 5. The Fundamental Trigonometric Limit; Chapter VIII. Sequences and Series of Functions; 1. Functions Defined by Limits; 2. Continuity and Uniform Convergence; 3. Integrals and Derivatives; 4. Taylor's Theorem; 5. Power Series; 6. Topics for Further Study; Chapter IX. Additional Computational Methods; 1. L'Hôpital's Rule; 2. Newton's Method; 3. Simpson's Rule 
505 8 |a 4. The Substitution Rule for IntegralsReferences; Index 
520 |a Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstra. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical analysis. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068 
776 0 8 |i Print version:  |a Bagby, Richard J.  |t Introductory analysis.  |d San Diego : Harcourt/Academic Press, ©2001  |z 0120725509  |z 9780120725502  |w (DLC) 00103265  |w (OCoLC)45316258 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203257  |z Texto completo 
938 |a Baker and Taylor  |b BTCP  |n BK0007476097 
938 |a Coutts Information Services  |b COUT  |n 6484137 
938 |a ebrary  |b EBRY  |n ebr10188249 
938 |a EBSCOhost  |b EBSC  |n 203257 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 102871 
938 |a YBP Library Services  |b YANK  |n 2614877 
994 |a 92  |b IZTAP