Real and complex singularities : proceedings of the Australian-Japanese Workshop, University of Sydney, Australia, 5-8 September, 2005 /
The modern theory of singularities provides a unifying theme that runs through fields of mathematics as diverse as homological algebra and Hamiltonian systems. It is also an important point of reference in the development of a large part of contemporary algebra, geometry and analysis. Presented by i...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; Hackensack, NJ :
World Scientific,
©2007.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- TOC36;CONTENTS
- Preface
- List of Participants
- Organizing Committee
- CH36;Integral curves for contact and Engel structures
- 146; Introduction
- 246; Preliminaries
- 246;146; Basic definitions
- 246;246; Vertical projections and fronts
- 246;346; Horizontal projections and rotation number
- 346; Reidemeister moves for contact and Engel structures
- 346;146; Reidemeister moves for contact structures
- 346;246; Reidemeister moves for Engel structures
- 446; Classification of trivial Legendrian knots
- 446;146; Characteristic foliations on a spanning disk
- 446;246; Deformation of corresponding fronts
- 546; Classification of horizontal loops in the standard Engel space
- 546;146; Legendrian knots with singularities
- 546;246; Deformations of fronts
- 646; Observations
- 646;146; Variants of Whitneys theorem
- 646;246; General Goursat structure case
- Acknowledgements
- References
- CH36;On the realisation of a map of certain class as a desingularization map
- 146; Introduction
- 246; Polynomial mappings
- 346; o45;minimal mappings
- 446; Nash mappings
- Acknowledgements
- References
- CH36;Hermitian pairings and isolated singularities
- 146; Introduction
- 246; Hermitian pairings in knot theory
- 346; Meromorphic connections
- 446; The Gauss45;Manin connection
- 546; Duality pairings
- References
- CH36;Zariskis moduli problem for plane branches and the classification of Legendre curve singularities
- 146; Introduction46;
- 246; How to find symplectic normal forms46;
- 346; How to find differential normal forms46;
- 446; Classification of simple and uni45;modal plane branches46;
- 5 46; How to find contact normal forms46;
- 646; Classification of simple and uni45;modal Legendre curve singularities46;
- 746; Classification of 40;644; 741;45;curves46;
- 846; Open questions46;
- Acknowledgements46;
- References
- CH36;Introduction to algebraic theory of multivariate interpolation
- 146; Introduction
- 246; Sesqui45;linear maps
- 346; Zero45;dimensional subset of Cn
- 446; Holonomic systems
- 546; Hermite type interpolation
- 646; Noetherian operators
- 746; Filtered vector space
- 846; The least interpolation space
- 946; Examples
- Acknowledgement58;
- References
- CH36;Fundamental properties of germs of analytic mappings of an45; alytic sets and related topics
- 146; Introduction
- 246; Theory of order
- 346; Gabrielovs theorems
- 446; Open homomorphisms
- 546; Inequality of the orders of products58; 40;CI45;141;
- 646; Local boundedness of the constants in CIS
- 746; Zero estimate
- 846; Analogy between Gabrielovs theorem and 40;CI45;241;
- 946; Geometric flatness along subsets
- 1046; Artin approximation theorem
- 1146; Arc space versions
- References
- CH36;Singularity theory of smooth mappings and its applications58; A survey for non45;specialists
- 146; Introduction58; Elementary calculus
- 246; Smooth functions of several variables
- 346; Singularities of smooth mappings
- 446; Lagrangian and Legendrian singularities
- 546; Solid shapes and different.