Cargando…

Real and complex singularities : proceedings of the Australian-Japanese Workshop, University of Sydney, Australia, 5-8 September, 2005 /

The modern theory of singularities provides a unifying theme that runs through fields of mathematics as diverse as homological algebra and Hamiltonian systems. It is also an important point of reference in the development of a large part of contemporary algebra, geometry and analysis. Presented by i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: Australian-Japanese Workshop on Real and Complex Singularities Sydney, Australia
Otros Autores: Paunescu, Laurentiu
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2007.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • TOC36;CONTENTS
  • Preface
  • List of Participants
  • Organizing Committee
  • CH36;Integral curves for contact and Engel structures
  • 146; Introduction
  • 246; Preliminaries
  • 246;146; Basic definitions
  • 246;246; Vertical projections and fronts
  • 246;346; Horizontal projections and rotation number
  • 346; Reidemeister moves for contact and Engel structures
  • 346;146; Reidemeister moves for contact structures
  • 346;246; Reidemeister moves for Engel structures
  • 446; Classification of trivial Legendrian knots
  • 446;146; Characteristic foliations on a spanning disk
  • 446;246; Deformation of corresponding fronts
  • 546; Classification of horizontal loops in the standard Engel space
  • 546;146; Legendrian knots with singularities
  • 546;246; Deformations of fronts
  • 646; Observations
  • 646;146; Variants of Whitneys theorem
  • 646;246; General Goursat structure case
  • Acknowledgements
  • References
  • CH36;On the realisation of a map of certain class as a desingularization map
  • 146; Introduction
  • 246; Polynomial mappings
  • 346; o45;minimal mappings
  • 446; Nash mappings
  • Acknowledgements
  • References
  • CH36;Hermitian pairings and isolated singularities
  • 146; Introduction
  • 246; Hermitian pairings in knot theory
  • 346; Meromorphic connections
  • 446; The Gauss45;Manin connection
  • 546; Duality pairings
  • References
  • CH36;Zariskis moduli problem for plane branches and the classification of Legendre curve singularities
  • 146; Introduction46;
  • 246; How to find symplectic normal forms46;
  • 346; How to find differential normal forms46;
  • 446; Classification of simple and uni45;modal plane branches46;
  • 5 46; How to find contact normal forms46;
  • 646; Classification of simple and uni45;modal Legendre curve singularities46;
  • 746; Classification of 40;644; 741;45;curves46;
  • 846; Open questions46;
  • Acknowledgements46;
  • References
  • CH36;Introduction to algebraic theory of multivariate interpolation
  • 146; Introduction
  • 246; Sesqui45;linear maps
  • 346; Zero45;dimensional subset of Cn
  • 446; Holonomic systems
  • 546; Hermite type interpolation
  • 646; Noetherian operators
  • 746; Filtered vector space
  • 846; The least interpolation space
  • 946; Examples
  • Acknowledgement58;
  • References
  • CH36;Fundamental properties of germs of analytic mappings of an45; alytic sets and related topics
  • 146; Introduction
  • 246; Theory of order
  • 346; Gabrielovs theorems
  • 446; Open homomorphisms
  • 546; Inequality of the orders of products58; 40;CI45;141;
  • 646; Local boundedness of the constants in CIS
  • 746; Zero estimate
  • 846; Analogy between Gabrielovs theorem and 40;CI45;241;
  • 946; Geometric flatness along subsets
  • 1046; Artin approximation theorem
  • 1146; Arc space versions
  • References
  • CH36;Singularity theory of smooth mappings and its applications58; A survey for non45;specialists
  • 146; Introduction58; Elementary calculus
  • 246; Smooth functions of several variables
  • 346; Singularities of smooth mappings
  • 446; Lagrangian and Legendrian singularities
  • 546; Solid shapes and different.