Cargando…

Mathematical thinking and writing : a transition to abstract mathematics /

The ability to construct proofs is one of the most challenging aspects of the world of mathematics. It is, essentially, the defining moment for those testing the waters in a mathematical career. Instead of being submerged to the point of drowning, readers of Mathematical Thinking and Writing are giv...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Maddox, Randall B.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego, Calif. : Academic Press, ©2002.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn166269238
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 070823s2002 caua o 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d NLGGC  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d M8D  |d VLY  |d OCLCQ  |d OCLCO  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 505067007  |a 648270615  |a 1162031489  |a 1241800147  |a 1300682435  |a 1302141095 
020 |a 9780080496474  |q (electronic bk.) 
020 |a 0080496474  |q (electronic bk.) 
020 |a 1281012076 
020 |a 9781281012074 
020 |a 9786611012076 
020 |a 6611012079 
020 |z 0124649769  |q (acid-free paper) 
029 1 |a DEBBG  |b BV043147002 
029 1 |a DEBSZ  |b 422201146 
029 1 |a GBVCP  |b 802324053 
035 |a (OCoLC)166269238  |z (OCoLC)505067007  |z (OCoLC)648270615  |z (OCoLC)1162031489  |z (OCoLC)1241800147  |z (OCoLC)1300682435  |z (OCoLC)1302141095 
050 4 |a QA9.54  |b .M34 2002eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
082 0 4 |a 511.3  |2 22 
049 |a UAMI 
100 1 |a Maddox, Randall B. 
245 1 0 |a Mathematical thinking and writing :  |b a transition to abstract mathematics /  |c Randall B. Maddox. 
260 |a San Diego, Calif. :  |b Academic Press,  |c ©2002. 
300 |a 1 online resource (xviii, 304 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Cover; Contents; Why Read This Book?; Preface; Chapter 0. Notation and Assumptions; 0.1 Set Terminology and Notation; 0.2 Assumptions; Part I: Foundations of Logic and Proof Writing; Chapter 1. Logic; 1.1 Introduction to Logic; 1.2 If-Then Statements; 1.3 Universal and Existential Quantifiers; 1.4 Negations of Statements; Chapter 2. Beginner-Level Proofs; 2.1 Proofs Involving Sets; 2.2 Indexed Families of Sets; 2.3 Algebraic and Ordering Properties of R; 2.4 The Principle of Mathematical Induction; 2.5 Equivalence Relations: The Idea of Equality; 2.6 Equality, Addition, and Multiplication inQ 
505 8 |a 2.7 The Division Algorithm and Divisibility2.8 Roots and irrational numbers; 2.9 Relations In General; Chapter 3. Functions; 3.1 Definitions and Terminology; 3.2 Composition and Inverse Functions; 3.3 Cardinality of Sets; 3.4 Counting Methods and the Binomial Theorem; Part II: Basic Priniciples of Analysis; Chapter 4. The Real Numbers; 4.1 The Least Upper Bound Axiom; 4.2 Sets in R; 4.3 Limit Points and Closure of Sets; 4.4 Compactness; 4.5 Sequences in R; 4.6 Convergence of Sequences; 4.7 The Nested Interval Property; 4.8 Cauchy Sequences; Chapter 5. Functions of a Real Variable 
505 8 |a 5.1 Bounded and Monotone Functions5.2 Limits and Their Basic Properties; 5.3 More on Limits; 5.4 Limits Involving Infinity; 5.5 Continuity; 5.6 Implications of Continuity; 5.7 Uniform Continuity; Part III: Basic Principles of Alegbra; Chapter 6. Groups; 6.1 Introduction to Groups; 6.2 Generated and Cyclic Subgroups; 6.3 Integers Modulo n and Quotient Groups; 6.4 Permutation Groups and Normal Subgroups; 6.5 Group Morphisms; Chapter 7. Rings; 7.1 Rings and Subrings; 7.2 Ring Properties and Fields; 7.3 Ring Extensions; 7.4 Ideals; 7.5 Integral Domains; 7.6 UFDs and PIDs; 7.7 Euclidean Domains 
505 8 |a 7.8 Ring Morphisms7.9 Quotient Rings; Index 
520 |a The ability to construct proofs is one of the most challenging aspects of the world of mathematics. It is, essentially, the defining moment for those testing the waters in a mathematical career. Instead of being submerged to the point of drowning, readers of Mathematical Thinking and Writing are given guidance and support while learning the language of proof construction and critical analysis. Randall Maddox guides the reader with a warm, conversational style, through the task of gaining a thorough understanding of the proof process, and encourages inexperienced mathematicians to step. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Proof theory. 
650 0 |a Logic, Symbolic and mathematical. 
650 6 |a Théorie de la preuve. 
650 6 |a Logique symbolique et mathématique. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Logic, Symbolic and mathematical  |2 fast 
650 7 |a Proof theory  |2 fast 
776 0 8 |i Print version:  |a Maddox, Randall B.  |t Mathematical thinking and writing.  |d San Diego, Calif. : Academic Press, ©2002  |z 0124649769  |z 9780124649767  |w (DLC) 2001091290  |w (OCoLC)48536718 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=195523  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10180569 
938 |a EBSCOhost  |b EBSC  |n 195523 
938 |a Internet Archive  |b INAR  |n mathematicalthin0000madd 
938 |a YBP Library Services  |b YANK  |n 2609354 
994 |a 92  |b IZTAP