Cargando…

Lectures on the Curry-Howard isomorphism /

The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to depe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sørensen, Morten Heine
Otros Autores: Urzyczyn, Paweł
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston [MA] : Elsevier, 2006.
Edición:1st ed.
Colección:Studies in logic and the foundations of mathematics ; v. 149.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn162586983
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 070806s2006 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d E7B  |d IDEBK  |d REDDC  |d OCLCO  |d OCLCQ  |d DEBSZ  |d OPELS  |d OCLCF  |d DEBBG  |d TULIB  |d OCLCQ  |d EBLCP  |d OCLCQ  |d COO  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d AGLDB  |d COCUF  |d FEM  |d MOR  |d PIFAG  |d OCLCQ  |d STF  |d WRM  |d D6H  |d VTS  |d INT  |d OCLCQ  |d LEAUB  |d M8D  |d BWN  |d OCLCQ  |d UKCRE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
016 7 |a 013464440  |2 Uk 
019 |a 154225201  |a 441806456  |a 648299514  |a 779919943  |a 961695367  |a 962729760  |a 966202326  |a 969021749  |a 988417356  |a 989205680  |a 991963725  |a 1035703211  |a 1037744831  |a 1038652636  |a 1110380017  |a 1153471587 
020 |a 9780444520777 
020 |a 0444520775 
020 |a 9780080478920  |q (electronic bk.) 
020 |a 0080478921  |q (electronic bk.) 
029 1 |a AU@  |b 000048130208 
029 1 |a CHNEW  |b 001006651 
029 1 |a DEBBG  |b BV036962355 
029 1 |a DEBBG  |b BV042317348 
029 1 |a DEBBG  |b BV043044461 
029 1 |a DEBSZ  |b 276851382 
029 1 |a DEBSZ  |b 422199346 
029 1 |a DEBSZ  |b 482355913 
029 1 |a NZ1  |b 12435162 
035 |a (OCoLC)162586983  |z (OCoLC)154225201  |z (OCoLC)441806456  |z (OCoLC)648299514  |z (OCoLC)779919943  |z (OCoLC)961695367  |z (OCoLC)962729760  |z (OCoLC)966202326  |z (OCoLC)969021749  |z (OCoLC)988417356  |z (OCoLC)989205680  |z (OCoLC)991963725  |z (OCoLC)1035703211  |z (OCoLC)1037744831  |z (OCoLC)1038652636  |z (OCoLC)1110380017  |z (OCoLC)1153471587 
037 |a 116411:116509  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a QA9.54  |b .S67 2006eb 
072 7 |a MAT  |x 031000  |2 bisacsh 
082 0 4 |a 511.3/26  |2 22 
049 |a UAMI 
100 1 |a Sørensen, Morten Heine. 
245 1 0 |a Lectures on the Curry-Howard isomorphism /  |c Morten Heine Sørensen, Paweł Urzyczyn. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston [MA] :  |b Elsevier,  |c 2006. 
300 |a 1 online resource (xiv, 442 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Studies in logic and the foundations of mathematics,  |x 0049-237X ;  |v v. 149 
520 |a The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning. 
505 0 |a Preface -- Acknowledgements -- 1. Typefree lambda-calculus -- 2. Intuitionistic logic -- 3. Simply typed lambdacalculus -- 4. The Curry-Howard isomorphism -- 5. Proofs as combinators -- 6. Classical logic and control operators -- 7. Sequent calculus -- 8. First-order logic -- 9. First-order arithmetic -- 10. G̲del's system T -- 11. Second-order logic and polymorphism -- 12. Second-order arithmetic -- 13. Dependent types -- 14. Pure type systems and the lambda-cube -- A Mathematical Background -- B Solutions and hints to selected exercises -- Bibliography -- Index. 
504 |a Includes bibliographical references (pages 403-430) and index. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Curry-Howard isomorphism. 
650 0 |a Lambda calculus. 
650 0 |a Proof theory. 
650 6 |a Curry-Howard, Isomorphisme de. 
650 6 |a Lambda-calcul. 
650 6 |a Théorie de la preuve. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Curry-Howard isomorphism.  |2 fast  |0 (OCoLC)fst00885411 
650 7 |a Lambda calculus.  |2 fast  |0 (OCoLC)fst00991011 
650 7 |a Proof theory.  |2 fast  |0 (OCoLC)fst01078942 
650 1 7 |a Lambda-calculus.  |2 gtt 
650 1 7 |a Programmeren (computers)  |2 gtt 
700 1 |a Urzyczyn, Paweł. 
776 0 8 |i Print version:  |a Sørensen, Morten Heine.  |t Lectures on the Curry-Howard isomorphism.  |b 1st ed.  |d Amsterdam ; Boston [MA] : Elsevier, 2006  |z 0444520775  |z 9780444520777  |w (DLC) 2006048390  |w (OCoLC)70158578 
830 0 |a Studies in logic and the foundations of mathematics ;  |v v. 149.  |x 0049-237X 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196231  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4052483 
938 |a ebrary  |b EBRY  |n ebr10185917 
938 |a EBSCOhost  |b EBSC  |n 196231 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 105105 
938 |a YBP Library Services  |b YANK  |n 2586131 
994 |a 92  |b IZTAP