Cargando…

Outcome prediction in cancer /

This book is organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle. The first section describes the clinical problem and some of the predicaments that clinicians face in dealing with cancer. Amongst issues discussed in this section are the TNM...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Taktak, Azzam F. G., Fisher, Anthony C., Dr
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, ©2007.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn162131472
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 070802s2007 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d BAKER  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d UBY  |d E7B  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d CHVBK  |d NLGGC  |d OCLCQ  |d LOA  |d OCLCO  |d JBG  |d OCLCO  |d OCLCA  |d COCUF  |d TOA  |d OCLCO  |d AGLDB  |d FEM  |d STF  |d OCLCO  |d MOR  |d PIFAG  |d OCLCQ  |d OCLCO  |d OCLCA  |d WRM  |d VNS  |d OCLCO  |d D6H  |d OCLCO  |d OCLCQ  |d VTS  |d OCLCO  |d REC  |d VT2  |d OCLCO  |d OCLCQ  |d WYU  |d OCLCA  |d S9I  |d LEAUB  |d OCLCO  |d M8D  |d OCLCO  |d UX1  |d OCLCA  |d UKCRE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCQ 
015 |a GBA761108  |2 bnb 
016 7 |a 101299213  |2 DNLM 
016 7 |a 013787068  |2 Uk 
019 |a 86172612  |a 441771071  |a 505130390  |a 648129286  |a 961596992  |a 962701441  |a 966199488  |a 968096328  |a 969089536  |a 984785601  |a 988435465  |a 991994558  |a 1037675283  |a 1038650082  |a 1055395703  |a 1064177778  |a 1081295975  |a 1153490883  |a 1228566247 
020 |a 9780444528551 
020 |a 0444528555 
020 |a 9780080468037  |q (electronic bk.) 
020 |a 0080468039  |q (electronic bk.) 
029 1 |a AU@  |b 000051558317 
029 1 |a CHBIS  |b 005832934 
029 1 |a CHDSB  |b 005986108 
029 1 |a CHNEW  |b 001006062 
029 1 |a CHVBK  |b 168430916 
029 1 |a DEBBG  |b BV039834095 
029 1 |a DEBBG  |b BV042310624 
029 1 |a DEBBG  |b BV043044049 
029 1 |a DEBSZ  |b 405304838 
029 1 |a DEBSZ  |b 422223972 
029 1 |a NZ1  |b 11778317 
029 1 |a NZ1  |b 14540064 
029 1 |a NZ1  |b 15177285 
035 |a (OCoLC)162131472  |z (OCoLC)86172612  |z (OCoLC)441771071  |z (OCoLC)505130390  |z (OCoLC)648129286  |z (OCoLC)961596992  |z (OCoLC)962701441  |z (OCoLC)966199488  |z (OCoLC)968096328  |z (OCoLC)969089536  |z (OCoLC)984785601  |z (OCoLC)988435465  |z (OCoLC)991994558  |z (OCoLC)1037675283  |z (OCoLC)1038650082  |z (OCoLC)1055395703  |z (OCoLC)1064177778  |z (OCoLC)1081295975  |z (OCoLC)1153490883  |z (OCoLC)1228566247 
037 |a 134303:134431  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a RC270  |b .O98 2007eb 
060 4 |a 2007 B-597 
060 4 |a QZ 241  |b O94 2007 
072 7 |a RC  |2 lcco 
072 7 |a MED  |x 062000  |2 bisacsh 
072 7 |a HEA  |x 039030  |2 bisacsh 
082 0 4 |a 616.99/4075  |2 22 
049 |a UAMI 
245 0 0 |a Outcome prediction in cancer /  |c editors, Azzam F.G. Taktak and Anthony C. Fisher. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c ©2007. 
300 |a 1 online resource (xx, 461 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a This book is organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle. The first section describes the clinical problem and some of the predicaments that clinicians face in dealing with cancer. Amongst issues discussed in this section are the TNM staging, accepted methods for survival analysis and competing risks. The second section describes the biological and genetic markers and the r̥le of bioinformatics. Understanding of the genetic and environmental basis of cancers will help in identifying high-risk populations and developing effective prevention and early detection strategies. The third section provides technical details of mathematical analysis behind survival prediction backed up by examples from various types of cancers. The fourth section describes a number of machine learning methods which have been applied to decision support in cancer. The final section describes how information is shared within the scientific and medical communities and with the general population using information technology and the World Wide Web. * Applications cover 8 types of cancer including brain, eye, mouth, head and neck, breast, lungs, colon and prostate * Include contributions from authors in 5 different disciplines * Provides a valuable educational tool for medical informatics. 
505 0 |a Section 1 The Clinical Problem. -- THE PREDICTIVE VALUE OF DETAILED HISTOLOGICAL STAGING OF SURGICAL RESECTION SPECIMENS IN ORAL CANCER -- Chapter 1: The predictive value of detailed histological staging of surgical resection specimens in oral cancer. -- J. Woolgar -- Liverpool Dental School, UK -- Chapter 2: Survival after Treatment of Intraocular Melanoma. -- B.E. Damato, A.F.G. Taktak, -- Royal Liverpool University Hospital, UK -- Chapter 3: Recent developments in relative survival analysis. -- T. Hakulinen, T.A. Dyba, -- Finnish Cancer Registry -- Section 2 Biological and Genetic Factors -- Chapter 4: Environmental and genetic risk factors of lung cancer. -- A. Cassidy, J.K. Field, -- University of Liverpool, UK -- Chapter 5: Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer. -- A.S. Jones, -- University Hospital Aintree, UK -- Section 3 Mathematical Background of Prognostic Models -- Chapter 6: Flexible hazard modelling for outcome prediction in cancer -- perspectives for the use of bioinformatics knowledge. -- E. Biganzoli1, P. Boracchi2 -- 1 Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy -- 2 Universit̉ degli Studi di Milano, Milano, Italy -- Chapter 7: Information geometry for survival analysis and feature selection by neural networks. -- A. Eleuteri 1,2, R. Tagliaferri 3,4, L. Milano 1,2, M. De Laurentiis 1 -- 1Universit̉ di Napoli, Italy -- 2INFN sez. Napoli, Italy -- 3Universit`a di Salerno, Italy -- 4INFN sez. distaccata di Salerno, Italy -- Chapter 8: Artificial neural networks used in the survival analysis of breast cancer patients: A node negative study. -- C.T.C. Arsene, P.J. Lisboa, -- Liverpool John Moores University, UK -- Section 4 Application of Machine Learning Methods -- Chapter 9: The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients. -- A. Marchevsky, -- Cedars-Sinai Medical Center, Los Angeles, USA -- Chapter 10: Machine learning contribution to solve prognosis medical problems. -- F. Baronti, A. Micheli, A. Passaro, A. Starita, -- University of Pisa, Italy -- Chapter 11: Classification of brain tumours by pattern recognition of Magnetic Resonance Imaging and Spectroscopic data. -- A. Devos1, S. Van Huffel1 A.W. Simonetti1, M. van der Graaf2, A. Heerschap2, L.M.C. Buydens3 -- 1Katholieke Universiteit Leuven, Belgium -- 2University Nijmegen Medical Centre, The Netherlands -- 3Radboud University Nijmegen, The Netherlands -- -- Chapter 12: Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data. -- M. Kokuer1, R.N.G. Naguib1, P. Jancovic2, H.B. Younghusband3, R. Green3 -- 1Coventry University, UK -- 2University of Birmingham, UK -- 3University of Newfoundland, Canada -- Chapter 13: The impact of microarray technology in brain cancer. -- M. Kounelakis1, M. Zervakis1, X. Kotsiakis2 -- 1Technical University of Crete, GREECE -- 2District Hospital of Chania, GREECE -- Section 5 Dissemination of Information -- Chapter 14: The web and the new generation of medical information. -- J.M. Fonseca, A.D. Mora, P. Barroso -- University of Lisbon, Portugal -- Chapter 15: Geoconda: a web environment for multi-centre research. -- C. Setzkorn, A.F.G. Taktak, B.E. Damato -- Royal Liverpool University Hospital, Liverpool, UK -- Chapter 16: The development and execution of medical prediction models. -- M.W. Kattan1, M. G̲nen2, P.T. Scardino2 -- 1The Cleveland Clinic Fondation, Cleveland, USA -- 2Memorial Sloan-Kettering Cancer Center, New York, USA. 
504 |a Includes bibliographical references and index. 
505 0 |a The predictive value of detailed histological staging of surgical resection specimens in oral cancer -- Survival after treatment of intraocular melanoma -- Recent developments in relative survival analysis -- Environmental and genetic risk factors of lung cancer -- Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer -- Flexible hazard modelling for outcome prediction in cancer: perspectives for the use of bioinformatics knowledge -- Information geometry for survival analysis and feature selection by neural networks -- Artificial neural networks used in the survival analysis of breast cancer patients: a node-negative study -- The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients -- Machine learning contribution to solve prognostic medical problems -- Classification of brain tumors by pattern recognition of magnetic resonance imaging and spectroscopic data -- Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data -- The impact of microarray technology in brain cancer -- The web and the new generation of medical information systems -- Geoconda: a web environment for multi-centre research -- The development and execution of medical prediction models. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Cancer  |x Diagnosis. 
650 0 |a Cancer  |x Prognosis. 
650 0 |a Neural networks (Computer science) 
650 0 |a Survival analysis (Biometry) 
650 0 |a Prognosis. 
650 1 2 |a Neoplasms  |x diagnosis 
650 1 2 |a Prognosis 
650 2 2 |a Decision Support Systems, Clinical 
650 2 2 |a Neural Networks, Computer 
650 2 2 |a Survival Analysis 
650 6 |a Cancer  |x Diagnostic. 
650 6 |a Cancer  |x Pronostic. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Analyse de survie (Biométrie) 
650 6 |a Pronostics (Pathologie) 
650 7 |a MEDICAL  |x Oncology.  |2 bisacsh 
650 7 |a HEALTH & FITNESS  |x Diseases  |x Cancer.  |2 bisacsh 
650 7 |a Prognosis.  |2 fast  |0 (OCoLC)fst01078654 
650 7 |a Cancer  |x Diagnosis.  |2 fast  |0 (OCoLC)fst00845345 
650 7 |a Cancer  |x Prognosis.  |2 fast  |0 (OCoLC)fst00845464 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Survival analysis (Biometry)  |2 fast  |0 (OCoLC)fst01139649 
700 1 |a Taktak, Azzam F. G. 
700 1 |a Fisher, Anthony C.,  |c Dr. 
776 0 8 |i Print version:  |t Outcome prediction in cancer.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, ©2007  |z 9780444528551  |z 0444528555  |w (OCoLC)77482420 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=185784  |z Texto completo 
938 |a Baker & Taylor  |b BKTY  |c 130.00  |d .00  |i 0444528555  |n 0006836576  |s active 
938 |a ebrary  |b EBRY  |n ebr10158401 
938 |a EBSCOhost  |b EBSC  |n 185784 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 74728 
938 |a YBP Library Services  |b YANK  |n 2537392 
994 |a 92  |b IZTAP