Cargando…

Viability, invariance and applications /

The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cârjă, Ovidiu
Otros Autores: Necula, Mihai, Vrabie, I. I. (Ioan I.), 1951-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2007.
Edición:1st ed.
Colección:North-Holland mathematics studies ; 207.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn162131435
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 070802s2007 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d BAKER  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d E7B  |d IDEBK  |d OCLCQ  |d REDDC  |d OCLCQ  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d WRM  |d D6H  |d OCLCQ  |d VTS  |d INT  |d OCLCQ  |d WYU  |d AZK  |d STF  |d VT2  |d OCLCQ  |d LEAUB  |d M8D  |d UKCRE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBA716199  |2 bnb 
016 7 |a 013683358  |2 Uk 
019 |a 170967912  |a 441781564  |a 648244998  |a 779920595  |a 814452397  |a 823107455  |a 823828138  |a 823897769  |a 824089194  |a 824135598  |a 961642182  |a 966242934  |a 988462448  |a 991950155  |a 1037763469  |a 1038667447  |a 1055405250  |a 1062888761  |a 1081289546  |a 1153457091 
020 |a 9780444527615 
020 |a 0444527613 
020 |a 9780080521664  |q (electronic bk.) 
020 |a 0080521665  |q (electronic bk.) 
020 |a 1281021555 
020 |a 9781281021557 
029 1 |a AU@  |b 000048130579 
029 1 |a AU@  |b 000051560101 
029 1 |a AU@  |b 000059268287 
029 1 |a CHNEW  |b 001006047 
029 1 |a DEBBG  |b BV036962185 
029 1 |a DEBBG  |b BV039834066 
029 1 |a DEBBG  |b BV042317168 
029 1 |a DEBBG  |b BV043044055 
029 1 |a DEBSZ  |b 276312066 
029 1 |a DEBSZ  |b 422198277 
029 1 |a DEBSZ  |b 482354062 
029 1 |a NZ1  |b 11778298 
029 1 |a NZ1  |b 14540172 
029 1 |a NZ1  |b 15177282 
035 |a (OCoLC)162131435  |z (OCoLC)170967912  |z (OCoLC)441781564  |z (OCoLC)648244998  |z (OCoLC)779920595  |z (OCoLC)814452397  |z (OCoLC)823107455  |z (OCoLC)823828138  |z (OCoLC)823897769  |z (OCoLC)824089194  |z (OCoLC)824135598  |z (OCoLC)961642182  |z (OCoLC)966242934  |z (OCoLC)988462448  |z (OCoLC)991950155  |z (OCoLC)1037763469  |z (OCoLC)1038667447  |z (OCoLC)1055405250  |z (OCoLC)1062888761  |z (OCoLC)1081289546  |z (OCoLC)1153457091 
037 |a 133439:133563  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a QA371  |b .C37 2007 
072 7 |a MAT  |x 007000  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
082 0 4 |a 515.35  |2 22 
049 |a UAMI 
100 1 |a Cârjă, Ovidiu. 
245 1 0 |a Viability, invariance and applications /  |c Ovidiu Cârjă, Mihai Necula, Ioan I. Vrabie. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2007. 
300 |a 1 online resource (xii, 344 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematics studies,  |x 0304-0208 ;  |v 207 
520 |a The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time. The book includes the most important necessary and sufficient conditions for viability starting with Nagumos Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In the latter (i.e. multi-valued) cases, the results (based on two completely new tangency concepts), all due to the authors, are original and extend significantly, in several directions, their well-known classical counterparts. - New concepts for multi-functions as the classical tangent vectors for functions - Provides the very general and necessary conditions for viability in the case of differential inclusions, semilinear and fully nonlinear evolution inclusions - Clarifying examples, illustrations and numerous problems, completely and carefully solved - Illustrates the applications from theory into practice - Very clear and elegant style. 
505 0 |a Preface -- Chapter 1. Generalities -- Chapter 2. Specific preliminary results -- Ordinary differential equations and inclusions -- Chapter 3. Nagumo type viability theorems -- Chapter 4. Problems of invariance -- Chapter 5. Viability under Caratȟodory conditions -- Chapter 6. Viability for differential inclusions -- Chapter 7. Applications -- Part 2 Evolution equations and inclusions -- Chapter 8. Viability for single-valued semilinear evolutions -- Chapter 9. Viability for multi-valued semilinear evolutions -- Chapter 10. Viability for single-valued fully nonlinear evolutions -- Chapter 11. Viability for multi-valued fully nonlinear evolutions -- Chapter 12. Caratȟodory perturbations of m-dissipative operators -- Chapter 13. Applications -- Solutions to the proposed problems -- Bibliographical notes and comments -- Bibliography -- Name Index -- Subject Index -- Notation. 
504 |a Includes bibliographical references (pages 325-333) and indexes. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Differential equations. 
650 0 |a Set theory. 
650 0 |a Symmetry (Mathematics) 
650 6 |a Équations différentielles. 
650 6 |a Théorie des ensembles. 
650 6 |a Symétrie (Mathématiques) 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Differential equations  |2 fast 
650 7 |a Set theory  |2 fast 
650 7 |a Symmetry (Mathematics)  |2 fast 
700 1 |a Necula, Mihai. 
700 1 |a Vrabie, I. I.  |q (Ioan I.),  |d 1951- 
776 0 8 |i Print version:  |a Cârjă, Ovidiu.  |t Viability, invariance and applications.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2007  |z 9780444527615  |z 0444527613  |w (OCoLC)85690133 
830 0 |a North-Holland mathematics studies ;  |v 207.  |x 0304-0208 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196523  |z Texto completo 
938 |a Baker & Taylor  |b BKTY  |c 127.00  |d 127.00  |i 0444527613  |n 0007189103  |s active 
938 |a ebrary  |b EBRY  |n ebr10175614 
938 |a EBSCOhost  |b EBSC  |n 196523 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 102155 
938 |a YBP Library Services  |b YANK  |n 2614115 
994 |a 92  |b IZTAP