Cargando…

Residuated lattices : an algebraic glimpse at substructural logics /

The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Galatos, Nikolaos
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2007.
Edición:1st ed.
Colección:Studies in logic and the foundations of mathematics ; v. 151.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn162130498
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 070802s2007 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d BAKER  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d E7B  |d IDEBK  |d OCLCQ  |d REDDC  |d OCLCQ  |d TULIB  |d OCLCO  |d OCLCQ  |d DEBSZ  |d OPELS  |d OCLCF  |d DEBBG  |d OCLCQ  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d FEM  |d MOR  |d PIFAG  |d OCLCQ  |d STF  |d WRM  |d D6H  |d OCLCQ  |d VTS  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d LEAUB  |d M8D  |d OCLCQ  |d K6U  |d UKCRE  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ 
016 7 |a 013662080  |2 Uk 
019 |a 155851146  |a 441806486  |a 648300233  |a 779920621  |a 961695347  |a 962729747  |a 966252783  |a 969011225  |a 988512033  |a 991959621  |a 1037702229  |a 1038631314  |a 1055357612  |a 1065109007  |a 1081290477  |a 1153516895  |a 1162009422  |a 1241843240  |a 1290030840  |a 1300487047 
020 |a 9780444521415 
020 |a 0444521410 
020 |a 9780080489643  |q (electronic bk.) 
020 |a 0080489648  |q (electronic bk.) 
020 |a 1281051063 
020 |a 9781281051066 
020 |a 9786611051068 
020 |a 6611051066 
029 1 |a AU@  |b 000048130461 
029 1 |a AU@  |b 000051558854 
029 1 |a AU@  |b 000059268278 
029 1 |a CHNEW  |b 001005677 
029 1 |a DEBBG  |b BV036962179 
029 1 |a DEBBG  |b BV042317162 
029 1 |a DEBBG  |b BV043044030 
029 1 |a DEBSZ  |b 276850238 
029 1 |a DEBSZ  |b 422199338 
029 1 |a DEBSZ  |b 482351764 
029 1 |a NZ1  |b 11778247 
029 1 |a NZ1  |b 14540252 
029 1 |a NZ1  |b 15192389 
035 |a (OCoLC)162130498  |z (OCoLC)155851146  |z (OCoLC)441806486  |z (OCoLC)648300233  |z (OCoLC)779920621  |z (OCoLC)961695347  |z (OCoLC)962729747  |z (OCoLC)966252783  |z (OCoLC)969011225  |z (OCoLC)988512033  |z (OCoLC)991959621  |z (OCoLC)1037702229  |z (OCoLC)1038631314  |z (OCoLC)1055357612  |z (OCoLC)1065109007  |z (OCoLC)1081290477  |z (OCoLC)1153516895  |z (OCoLC)1162009422  |z (OCoLC)1241843240  |z (OCoLC)1290030840  |z (OCoLC)1300487047 
037 |a 116820:116920  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a QA10  |b .R47 2007eb 
072 7 |a QA  |2 lcco 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
082 0 4 |a 511.33  |2 22 
084 |a 31.10  |2 bcl 
049 |a UAMI 
245 0 0 |a Residuated lattices :  |b an algebraic glimpse at substructural logics /  |c Nikolaos Galatos [and others]. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2007. 
300 |a 1 online resource (xxi, 509 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Studies in logic and the foundations of mathematics,  |x 0049-237X ;  |v v. 151 
520 |a The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric. - Considers both the algebraic and logical perspective within a common framework. - Written by experts in the area. - Easily accessible to graduate students and researchers from other fields. - Results summarized in tables and diagrams to provide an overview of the area. - Useful as a textbook for a course in algebraic logic, with exercises and suggested research directions. - Provides a concise introduction to the subject and leads directly to research topics. - The ideas from algebra and logic are developed hand-in-hand and the connections are shown in every level. 
505 0 |a Contents -- List of Figures -- List of Tables -- Introduction -- Chapter 1. Getting started -- Chapter 2. Substructural logics and residuated lattices -- Chapter 3. Residuation and structure theory -- Chapter 4. Decidability -- Chapter 5. Logical and algebraic properties -- Chapter 6. completions and finite embeddability -- Chapter 7. Algebraic aspects of cut elimination -- Chapter 8. Glivenko theorems -- Chapter 9. Lattices of logics and varieties -- Chapter 10. Splittings -- Chapter 11. Semisimplicity -- Bibliography -- Index. 
504 |a Includes bibliographical references (pages 479-495) and index. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Algebraic logic. 
650 0 |a Lattice theory. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Algebraic logic.  |2 fast  |0 (OCoLC)fst00804936 
650 7 |a Lattice theory.  |2 fast  |0 (OCoLC)fst00993426 
700 1 |a Galatos, Nikolaos. 
776 0 8 |i Print version:  |t Residuated lattices.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2007  |z 9780444521415  |z 0444521410  |w (OCoLC)127107606 
830 0 |a Studies in logic and the foundations of mathematics ;  |v v. 151.  |x 0049-237X 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196232  |z Texto completo 
938 |a Baker & Taylor  |b BKTY  |c 132.00  |d 132.00  |i 0444521410  |n 0007123488  |s active 
938 |a ebrary  |b EBRY  |n ebr10186004 
938 |a EBSCOhost  |b EBSC  |n 196232 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 105106 
938 |a YBP Library Services  |b YANK  |n 2586306 
994 |a 92  |b IZTAP