Cargando…

Theory and applications of numerical analysis /

This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics and the algorithms which define precisely how to program the numerical methods. Both theoreti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Phillips, G. M. (George McArtney)
Otros Autores: Taylor, Peter John
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London ; San Diego : Academic Press, 1996.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn162129115
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 070802s1996 enka ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCG  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d E7B  |d MERUC  |d TULIB  |d OCLCQ  |d OCLCF  |d OCLCQ  |d COO  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d COCUF  |d STF  |d WRM  |d D6H  |d OCLCQ  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d LEAUB  |d M8D  |d BWN  |d UKCRE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 175292874  |a 647653664  |a 779920447  |a 961512015  |a 962725400  |a 965984932  |a 988477696  |a 989313966  |a 991997415  |a 1035652075  |a 1037752485  |a 1038649967  |a 1045539354  |a 1055405496  |a 1081227298  |a 1097164226  |a 1110394927  |a 1153523201  |a 1228581266 
020 |a 9780125535601 
020 |a 0125535600 
020 |a 9780080519128  |q (electronic bk.) 
020 |a 0080519121  |q (electronic bk.) 
029 1 |a AU@  |b 000048130452 
029 1 |a CHNEW  |b 001005260 
029 1 |a DEBBG  |b BV036962214 
029 1 |a DEBBG  |b BV039830083 
029 1 |a DEBBG  |b BV042317234 
029 1 |a DEBBG  |b BV043044921 
029 1 |a DEBSZ  |b 275751414 
029 1 |a DEBSZ  |b 422177032 
029 1 |a NZ1  |b 12434028 
029 1 |a NZ1  |b 14540430 
035 |a (OCoLC)162129115  |z (OCoLC)175292874  |z (OCoLC)647653664  |z (OCoLC)779920447  |z (OCoLC)961512015  |z (OCoLC)962725400  |z (OCoLC)965984932  |z (OCoLC)988477696  |z (OCoLC)989313966  |z (OCoLC)991997415  |z (OCoLC)1035652075  |z (OCoLC)1037752485  |z (OCoLC)1038649967  |z (OCoLC)1045539354  |z (OCoLC)1055405496  |z (OCoLC)1081227298  |z (OCoLC)1097164226  |z (OCoLC)1110394927  |z (OCoLC)1153523201  |z (OCoLC)1228581266 
037 |a 81730:81730  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a QA297  |b .P52 1996eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
082 0 4 |a 519.4  |2 22 
049 |a UAMI 
100 1 |a Phillips, G. M.  |q (George McArtney) 
245 1 0 |a Theory and applications of numerical analysis /  |c G.M. Phillips and P.J. Taylor. 
250 |a 2nd ed. 
260 |a London ;  |a San Diego :  |b Academic Press,  |c 1996. 
300 |a 1 online resource (xii, 447 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics and the algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. * a unique blend of theory and applications * two brand new chapters on eigenvalues and splines * inclusion of formal algorithms * numerous fully worked examples * a large number of problems, many with solutions. 
505 0 |a (Chapter Heading): Introduction. Basic Analysis. Taylors Polynomial and Series. The Interpolating Polynomial. Best Approximation. Splines and Other Approximations. Numerical Integration and Differentiation. Solution of Algebraic Equations of One Variable. Linear Equations. Matrix Norms and Applications. Matrix Eigenvalues and Eigenvectors. Systems of Non-linear Equations. Ordinary Differential Equations. Boundary Value and Other Methods for Ordinary Differential Equations. Appendices. Solutions to Selected Problems. References. Subject Index. -- Introduction: What is Numerical Analysis? Numerical Algorithms. Properly Posed and Well-Conditioned Problems. Basic Analysis: Functions. Limits and Derivatives. Sequences and Series. Integration. Logarithmic and Exponential Functions. Taylor's Polynomial and Series: Function Approximation. Taylor's Theorem. Convergence of Taylor Series. Taylor Series in Two Variables. Power Series. The Interpolating Polyomial: Linear Interpolation. Polynomial Interpolation. Accuracy of Interpolation. The Neville-Aitken Algorithm. Inverse Interpolation. Divided Differences. Equally Spaced Points. Derivatives and Differences. Effect of Rounding Error. Choice of Interpolation Points. Examples of Bernstein and Runge. "Best"Approximation: Norms of Functions. Best Approximations. Least Squares Approximations. Orthogonal Functions. Orthogonal Polynomials. Minimax Approximation. Chebyshev Series. Economization of Power Series. The Remez Algorithms. Further Results on Minimax Approximation. Splines and Other Approximations: Introduction. B-Splines. Equally-Spaced Knots. Hermite Interpolation. Pade and Rational Approximation. Numerical Integration and Differentiation: Numerical Integration. Romberg Integration. Gaussian Integration. Indefinite Integrals. Improper Integrals. Multiple Integrals. Numerical Differentiation. Effect of Errors. Solution of Algebraic Equations of One Variable: Introduction. The Bisection Method. Interpolation Methods. One-Point Iterative Methods. Faster Convergence. Higher Order Processes. The Contraction Mapping Theorem. Linear Equations: Introduction. Matrices. Linear Equations. Pivoting. Analysis of Elimination Method. Matrix Factorization. Compact Elimination Methods. Symmetric Matrices. Tridiagonal Matrices. Rounding Errors in Solving Linear Equations. Matrix Norms and Applications: Determinants, Eigenvalues, and Eigenvectors. Vector Norms. Matrix Norms. Conditioning. Iterative Correction from Residual Vectors. Iterative Methods. Matrix Eigenvalues and Eigenvectors: Relations Between Matrix Norms and Eigenvalues; Gerschgorin Theorems. Simple and Inverse Iterative Method. Sturm Sequence Method. The QR Algorithm. Reduction to Tridiagonal Form: Householder's Method. Systems of Non-Linear Equations: Contraction Mapping Theorem. Newton's Method. Ordinary Differential Equations: Introduction. Difference Equations and Inequalities. One-Step Methods. Truncation Errors of One-Step Methods. Convergence of One-Step Methods. Effect of Rounding Errors on One-Step Methods. Methods Based on Numerical Integration; Explicit Methods. Methods Based on Numerical Integration; Implicit Methods. Iterating with the Corrector. Milne's Method of Estimating Truncation Errors. Numerical Stability. Systems and Higher Order Equations. Comparison of Step-by-Step Methods. Boundary Value and Other Methods for Ordinary Differential Equations: Shooting Method for Boundary Value Problems. Boundary Value Problem. Extrapolation to the Limit. Deferred Correction. Chebyshev Series Method. Appendices. Solutions to Selected Problems. References. Subject Index. 
504 |a Includes bibliographical references (pages 440-441) and index. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Numerical analysis. 
650 6 |a Analyse numérique. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Numerical analysis  |2 fast 
650 7 |a ANÁLISE NUMÉRICA.  |2 larpcal 
700 1 |a Taylor, Peter John. 
776 0 8 |i Print version:  |a Phillips, G.M. (George McArtney).  |t Theory and applications of numerical analysis.  |b 2nd ed.  |d London ; San Diego : Academic Press, 1996  |z 0125535600  |z 9780125535601  |w (OCoLC)35455584 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=207174  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10190930 
938 |a EBSCOhost  |b EBSC  |n 207174 
938 |a YBP Library Services  |b YANK  |n 2737457 
994 |a 92  |b IZTAP