Cargando…

Multiscale wavelet methods for partial differential equations /

This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Dahmen, Wolfgang, 1949-, Kurdila, Andrew, Oswald, Peter, 1951-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Academic Press, ©1997.
Colección:Wavelet analysis and its applications ; v. 6.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn162128737
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 070802s1997 maua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCG  |d OCLCQ  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCQ  |d STF  |d D6H  |d OCLCQ  |d VTS  |d NLE  |d OCLCO  |d OCLCQ  |d UKMGB  |d OCLCO  |d LEAUB  |d REC  |d OCLCA  |d M8D  |d OCLCO  |d OCLCQ  |d OCLCO  |d NLW  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB738774  |2 bnb 
016 7 |a 017548833  |2 Uk 
019 |a 182552595  |a 647671158  |a 742286159  |a 815534722  |a 823110255  |a 823830593  |a 823900303  |a 824091591  |a 824139799  |a 1035677175 
020 |a 9780122006753 
020 |a 0122006755 
020 |a 9780080537146  |q (electronic bk.) 
020 |a 0080537146  |q (electronic bk.) 
020 |a 1281076791 
020 |a 9781281076793 
029 1 |a AU@  |b 000051427331 
029 1 |a CHNEW  |b 001005141 
029 1 |a DEBBG  |b BV039832008 
029 1 |a DEBBG  |b BV042307428 
029 1 |a DEBBG  |b BV043044872 
029 1 |a DEBSZ  |b 405294182 
029 1 |a DEBSZ  |b 422161519 
029 1 |a DEBSZ  |b 482350326 
029 1 |a NZ1  |b 12432279 
029 1 |a NZ1  |b 15190351 
029 1 |a UKMGB  |b 017548833 
035 |a (OCoLC)162128737  |z (OCoLC)182552595  |z (OCoLC)647671158  |z (OCoLC)742286159  |z (OCoLC)815534722  |z (OCoLC)823110255  |z (OCoLC)823830593  |z (OCoLC)823900303  |z (OCoLC)824091591  |z (OCoLC)824139799  |z (OCoLC)1035677175 
037 |a 78146:78146  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a QC20.7.D5  |b M83 1997eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
082 0 4 |a 515/.2433  |2 22 
049 |a UAMI 
245 0 0 |a Multiscale wavelet methods for partial differential equations /  |c edited by Wolfgang Dahmen, Andrew Kurdila, Peter Oswald. 
260 |a San Diego :  |b Academic Press,  |c ©1997. 
300 |a 1 online resource (xiv, 570 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Wavelet analysis and its applications ;  |v v. 6 
520 |a This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. Key Features * Covers important areas of computational mechanics such as elasticity and computational fluid dynamics * Includes a clear study of turbulence modeling * Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations * Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications. 
505 0 |a FEM-Like Multilevel Preconditioning: P. Oswald, Multilevel Solvers for Elliptic Problems on Domains. P. Vassilevski and J. Wang, Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs. Fast Wavelet Algorithms: Compression and Adaptivity: S. Bertoluzza, An Adaptive Collocation Method Based on Interpolating Wavelets. G. Beylkin and J. Keiser, An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear PartialDifferential Equations. P. Joly, Y. Maday, and V. Perrier, A Dynamical Adaptive Concept Based on Wavelet Packet Best Bases: Application to Convection Diffusion Partial Differential Equations. S. Dahlke, W. Dahmen, and R. DeVore, Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations. Wavelet Solvers for Integral Equations: T. von Petersdorff and C. Schwab, Fully Discrete Multiscale Galerkin BEM. A. Rieder, Wavelet Multilevel Solvers for Linear Ill-Posed Problems Stabilized by Tikhonov Regularization. Software Tools and Numerical Experiments: T. Barsch, A. Kunoth, and K. Urban, Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs Using Wavelets. J. Ko, A. Kurdila, and P. Oswald, Scaling Function and Wavelet Preconditioners for Second Order Elliptic Problems. Multiscale Interaction and Applications to Turbulence: J. Elezgaray, G. Berkooz, H. Dankowicz, P. Holmes, and M. Myers, Local Models and Large Scale Statistics of the Kuramoto-Sivashinsky Equation. M. Wickerhauser, M. Farge, and E. Goirand, Theoretical Dimension and the Complexity of Simulated Turbulence. Wavelet Analysis of Partial Differential Operators: J-M. Angeletti, S. Mazet, and P. Tchamitchian, Analysis of Second-Order Elliptic Operators Without Boundary Conditions and With VMO or Hilderian Coefficients. M. Holschneider, Some Directional Elliptic Regularity for Domains with Cusps. Subject Index. 
504 |a Includes bibliographical references and index. 
505 0 |a Multilevel solvers for elliptic problems on domains / Peter Oswald -- Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs / Panayot S. Vassilevski and Junping Wang -- An adaptive collocation method based on interpolating wavelets / Silvia Bertoluzza -- An adaptive pseudo-wavelet approach for solving nonlinear partial differential equations / Gregory Beylkin and James M. Keiser -- A dynamical adaptive concept based on wavelet packet best bases : application to convection diffusion partial differential equations / Pascal Joly, Yvon Maday, and Valérie Perrier -- Nonlinear approximation and adaptive techniques for solving elliptic operator equations / Stephan Dahlke, Wolfgang Dahmen, and Ronald A. DeVore -- Fully discrete multiscale Galerkin BEM / Tobias von Petersdorff and Christoph Schwab -- Wavelet multilevel solvers for linear ill-posed problems stabilized by Tikhonov regularization / Andreas Rieder -- Towards object oriented software tools for numerical multiscale methods for PDEs using wavelets / Titus Barsch, Angela Kunoth, and Karsten Urban -- Scaling function and wavelet preconditioners for second order elliptic problems / Jeonghwan Ko, Andrew J. Kurdila, and Peter Oswald -- Local models and large scale statistics of the Kuramoto-Sivashinsky equation / Juan Elezgaray [and others] -- Theoretical dimension and the complexity of simulated turbulence / Mladen V. Wickerhauser, Marie Farge, and Eric Goirand -- Analysis of second order elliptic operators without boundary conditions and with VMO or Hölderian coefficients / Jean-Marc Angeletti, Sylvain Mazet, and Philippe Tchamitchian -- Some directional elliptic regularity for domains with cusps / Matthias Holschneider. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Differential equations, Partial  |x Numerical solutions. 
650 0 |a Wavelets (Mathematics) 
650 6 |a Équations aux dérivées partielles  |x Solutions numériques. 
650 6 |a Ondelettes. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a Differential equations, Partial  |x Numerical solutions  |2 fast 
650 7 |a Wavelets (Mathematics)  |2 fast 
650 7 |a Numerisches Verfahren  |2 gnd 
650 7 |a Partielle Differentialgleichung  |2 gnd 
650 7 |a Wavelet  |2 gnd 
650 7 |a Elliptisches Randwertproblem  |2 gnd 
650 1 7 |a Wavelets.  |2 gtt 
650 1 7 |a Partiële differentiaalvergelijkingen.  |2 gtt 
700 1 |a Dahmen, Wolfgang,  |d 1949- 
700 1 |a Kurdila, Andrew. 
700 1 |a Oswald, Peter,  |d 1951- 
776 0 8 |i Print version:  |t Multiscale wavelet methods for partial differential equations.  |d San Diego : Academic Press, ©1997  |z 0122006755  |z 9780122006753  |w (DLC) 97012672  |w (OCoLC)36621922 
830 0 |a Wavelet analysis and its applications ;  |v v. 6. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=212291  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10196334 
938 |a EBSCOhost  |b EBSC  |n 212291 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 107679 
938 |a YBP Library Services  |b YANK  |n 2739725 
994 |a 92  |b IZTAP