Cargando…

Neural networks and pattern recognition /

This book is one of the most up-to-date and cutting-edge texts available on the rapidly growing application area of neural networks. Neural Networks and Pattern Recognition focuses on the use of neural networksin pattern recognition, a very important application area for neural networks technology....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Omidvar, Omid, Dayhoff, Judith E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego, Calif. : Academic Press, ©1998.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn162128691
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 070802s1998 caua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d E7B  |d UMI  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d COO  |d AGLDB  |d OCLCQ  |d STF  |d D6H  |d VTS  |d CEF  |d OCLCQ  |d WYU  |d LEAUB  |d OCLCQ  |d K6U  |d VT2  |d VLY  |d OCLCQ  |d OCLCO  |d M8D  |d DST  |d OCLCQ 
019 |a 181032110  |a 647695983  |a 820029257  |a 823828686  |a 823898423  |a 824089712  |a 824136313  |a 1035706101  |a 1062924678  |a 1156366188  |a 1162012201  |a 1241775171  |a 1300637834 
020 |a 9780125264204 
020 |a 0125264208 
020 |a 9780080512617  |q (electronic bk.) 
020 |a 0080512615  |q (electronic bk.) 
020 |a 128103343X 
020 |a 9781281033437 
020 |a 9786611033439 
020 |a 6611033432 
029 1 |a AU@  |b 000050348010 
029 1 |a AU@  |b 000051563458 
029 1 |a CHNEW  |b 001005121 
029 1 |a DEBBG  |b BV039830498 
029 1 |a DEBBG  |b BV040903335 
029 1 |a DEBBG  |b BV042315479 
029 1 |a DEBBG  |b BV043044801 
029 1 |a DEBSZ  |b 378276417 
029 1 |a DEBSZ  |b 381393976 
029 1 |a DEBSZ  |b 40529400X 
029 1 |a DEBSZ  |b 422172790 
029 1 |a NZ1  |b 12433962 
029 1 |a AU@  |b 000072976186 
035 |a (OCoLC)162128691  |z (OCoLC)181032110  |z (OCoLC)647695983  |z (OCoLC)820029257  |z (OCoLC)823828686  |z (OCoLC)823898423  |z (OCoLC)824089712  |z (OCoLC)824136313  |z (OCoLC)1035706101  |z (OCoLC)1062924678  |z (OCoLC)1156366188  |z (OCoLC)1162012201  |z (OCoLC)1241775171  |z (OCoLC)1300637834 
037 |a 77584:77584  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a QA76.87  |b .O45 1998eb 
072 7 |a COM  |x 044000  |2 bisacsh 
072 7 |a UXCR  |2 bicssc 
082 0 4 |a 006.3/2  |2 22 
049 |a UAMI 
245 0 0 |a Neural networks and pattern recognition /  |c edited by Omid Omidvar, Judith Dayhoff. 
260 |a San Diego, Calif. :  |b Academic Press,  |c ©1998. 
300 |a 1 online resource (xvi, 351 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This book is one of the most up-to-date and cutting-edge texts available on the rapidly growing application area of neural networks. Neural Networks and Pattern Recognition focuses on the use of neural networksin pattern recognition, a very important application area for neural networks technology. The contributors are widely known and highly respected researchers and practitioners in the field. Key Features * Features neural network architectures on the cutting edge of neural network research * Brings together highly innovative ideas on dynamical neural networks * Includes articles written by authors prominent in the neural networks research community * Provides an authoritative, technically correct presentation of each specific technical area. 
505 0 |a (Chapter Headings) Preface. Contributors. J.L. Johnson, H. Ranganath, G. Kuntimad, and H.J. Caulfield, Pulse-Coupled Neural Networks. H. Li and J. Wang, A Neural Network Model for Optical Flow Computation. F. Unal and N. Tepedelenlioglu, Temporal Pattern Matching Using an Artificial Neural Network. J. Dayhoff, P. Palmadesso, F. Richards, and D.-T. Lin, Patterns of Dynamic Activity and Timing in Neural Network Processing. J. Ghosh, H.-J. Chang, and K. Liano, A Macroscopic Model of Oscillation in Ensembles of Inhibitory and Excitatory Neurons. P. Tito, B. Horne, C.L. Giles, and P. Collingwood, Finite State Machines and Recurrent Neural Networks--Automata and Dynamical Systems Approaches. R. Anderson, Biased Random-Walk Learning: A Neurobiological Correlate to Trial-and-Error. A. Nigrin, Using SONNET 1 to Segment Continuous Sequences of Items. K. Venkatesh, A. Pandya, and S. Hsu, On the Use of High Level Petri Nets in the Modeling of Biological Neural Networks. J. Principe, S. Celebi, B. de Vries, and J. Harris, Locally Recurrent Networks: The Gamma Operator, Properties, and Extensions. Preface. Contributors. J.L. Johnson, H. Ranganath, G. Kuntimad, and H.J. Caulfield, Pulse-Coupled Neural Networks: Introduction. Basic Model. Multiple Pulses. Multiple Receptive Field Inputs. Time Evolution of Two Cells. Space to Time. LinkingWaves and Time Scales. Groups. Invariances. Segmentation. Adaptation. Time to Space. Implementations. Integration into Systems. Concluding Remarks. References. H. Li and J. Wang, A Neural Network Model for Optical Flow Computation: Introduction. Theoretical Background. Discussion on the Reformulation. Choosing Regularization Parameters. A Recurrent Neural Network Model. Experiments. Comparison to Other Work. Summary and Discussion. References. F. Unal and N. Tepedelenlioglu, TemporalPattern Matching Using an Artificial Neural Network: Introduction. Solving Optimization Problems Using the Hopfield Network. Dynamic Time Warping Using Hopfield Network. Computer Simulation Results. Conclusions. References. J. Dayhoff, P. Palmadesso, F. Richards, and D.-T. Lin, Patterns of Dynamic Activity and Timing in Neural Network Processing: Introduction. Dynamic Networks. Chaotic Attractors and Attractor Locking. Developing Multiple Attractors. Attractor Basins and Dynamic Binary Networks. Time Delay Mechanisms and Attractor Training. Timing of Action Potentials in Impulse Trains. Discussion. Acknowledgments. References. J. Ghosh, H.-J. Chang, and K. Liano, A Macroscopic Model of Oscillation in Ensembles of Inhibitory and Excitatory Neurons: Introduction. A Macroscopic Model for Cell Assemblies. Interactions Between Two Neural Groups. Stability of Equilibrium States. Oscillation Frequency Estimation. Experimental Validation. Conclusion. Appendix. References. P. Tito, B. Horne, C.L. Giles, and P. Collingwood, Finite State Machines and Recurrent Neural Networks--Automata and Dynamical Systems Approaches: Introduction. State Machines. Dynamical Systems. Recurrent Neural Network. RNN as a State Machine. RNN as a Collection of Dynamical Systems. RNN with Two State Neurons. Experiments--Learning Loops of FSM. Discussion. References. R. Anderson, Biased Random-Walk Learning: A Neurobiological Correlate to Trial-and-Error: Introduction. Hebb's Rule. Theoretical Learning Rules. Biological Evidence. Conclusions. Acknowledgments. References and Bibliography. A. Nigrin, Using SONNET 1 to Segment Continuous Sequences of Items: Introduction. Learning Isolated and Embedded Spatial Patterns. Storing Items with Decreasing Activity. The LTM Invariance Principle. Using Rehearsal to Process Arbitrarily Long Lists. Implementing the LTM Invariance Principle with an On-Center Off-Surround Circuit. Resetting Items Once They can be Classified. Properties of a Classifying System. Simulations. Discussion. K. Venkatesh, A. Pandya, and S. Hsu, On the Use of High Level Petri Nets in the Modeling of Biological Neural Networks: Introduction. Fundamentals of PNs. Modeling of Biological Neural Systems with High Level PNs. New/Modified Elements Added to HPNs to Model BNNs. Example of a BNN: The Olfactory Bulb. Conclusions. References. J. Principe, S. Celebi, B. de Vries, and J. Harris, Locally Recurrent Networks: The Gamma Operator, Properties, and Extensions: Introduction. Linear Finite Dimensional Memory Structures. The Gamma Neural Network. Applications of the Gamma Memory. Interpretations of the Gamma Memory. Laguerre and Gamma II Memories. Analog VLSI Implementations of the Gamma Filter. Conclusions. References. 
504 |a Includes bibliographical references and index. 
505 0 |a Pulse-coupled neural networks / J.L. Johnson [and others] -- A neural network model for optical flow computation / Hua Li ; Jun Wang -- Temporal pattern matching using an artificial neural network / Fatih A. Unal ; Nazif Tepedelenlioglu -- Patterns of dynamic activity and timing in neural network processing / Judith E. Dayhoff [and others] -- A macroscopic model of oscillation in ensembles of inhibitory and excitatory neurons / Joydeep Ghosh ; Hung-Jen Chang ; Kadir Liano -- Finite state machines and recurrent neural networks--automata and dynamical systems approaches / Peter Tiňo [and others] -- Biased random-walk learning: a neurobiological correlate to trial-and-error / Russell W. Anderson -- Using SONNET 1 to segment continuous sequences of items / Albert Nigrin -- On the use of high-level petri nets in the modeling of biological neural networks / Kurapati Venkatesh ; Abhijit Pandya ; Sam Hsu -- Locally recurrent networks: the gamma operator, properties, and extensions / Jose C. Principe [and others]. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural networks (Computer science) 
650 0 |a Pattern recognition systems. 
650 7 |a COMPUTERS  |x Neural Networks.  |2 bisacsh 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Pattern recognition systems.  |2 fast  |0 (OCoLC)fst01055266 
700 1 |a Omidvar, Omid. 
700 1 |a Dayhoff, Judith E. 
776 0 8 |i Print version:  |t Neural networks and pattern recognition.  |d San Diego, Calif. : Academic Press, ©1998  |z 0125264208  |z 9780125264204  |w (DLC) 97025466  |w (OCoLC)37155674 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=209290  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10206480 
938 |a EBSCOhost  |b EBSC  |n 209290 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 103343 
938 |a YBP Library Services  |b YANK  |n 2729644 
994 |a 92  |b IZTAP