Introduction to clustering large and high-dimensional data /
This book focuses on a few of the most important clustering algorithms, providing a detailed account of these major models in an information retrieval context. The beginning chapters introduce the classic algorithms in detail, while the later chapters describe clustering through divergences and show...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2007.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Half-title; Title; Copyright; Dedication; Contents; Foreword; Preface; 1 Introduction and motivation; 2 Quadratic k-means algorithm; 3 BIRCH; 4 Spherical k-means algorithm; 5 Linear algebra techniques; 6 Information theoretic clustering; 7 Clustering with optimization techniques; 8 k-means clustering with divergences; 9 Assessment of clustering results; 10 Appendix: Optimization and linear algebra background; 11 Solutions to selected problems; Bibliography; Index.