Cargando…

Boundary value problems : and partial differential equations /

Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Powers, David L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier Academic Press, ©2006.
Edición:5th ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn127115041
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 070515s2006 ne a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d MERUC  |d E7B  |d OCLCQ  |d IDEBK  |d OCLCQ  |d REDDC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d YDXCP  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d COCUF  |d STF  |d WRM  |d OCLCQ  |d VTS  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d M8D  |d HS0  |d UKCRE  |d VLY  |d CUS  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 154792547  |a 441773621  |a 648164074  |a 961693580  |a 962720343  |a 966258665  |a 988421823  |a 991979237  |a 1037696441  |a 1038634334  |a 1055364543  |a 1062897362  |a 1081204977  |a 1153469873  |a 1162265300  |a 1228608291  |a 1241781511  |a 1290084513  |a 1300498177 
020 |a 9780080470795  |q (electronic bk.) 
020 |a 0080470793  |q (electronic bk.) 
020 |a 9780125637381 
020 |a 0125637381 
020 |a 1280961457 
020 |a 9781280961458 
020 |a 9786610961450 
020 |a 661096145X 
020 |z 0125637381 
029 1 |a AU@  |b 000051555876 
029 1 |a DEBBG  |b BV043095676 
029 1 |a DEBSZ  |b 422220426 
029 1 |a GBVCP  |b 802282474 
029 1 |a NZ1  |b 14540110 
029 1 |a AU@  |b 000068462048 
035 |a (OCoLC)127115041  |z (OCoLC)154792547  |z (OCoLC)441773621  |z (OCoLC)648164074  |z (OCoLC)961693580  |z (OCoLC)962720343  |z (OCoLC)966258665  |z (OCoLC)988421823  |z (OCoLC)991979237  |z (OCoLC)1037696441  |z (OCoLC)1038634334  |z (OCoLC)1055364543  |z (OCoLC)1062897362  |z (OCoLC)1081204977  |z (OCoLC)1153469873  |z (OCoLC)1162265300  |z (OCoLC)1228608291  |z (OCoLC)1241781511  |z (OCoLC)1290084513  |z (OCoLC)1300498177 
050 4 |a QA379  |b .P68 2006eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
082 0 4 |a 515/.353  |2 22 
049 |a UAMI 
100 1 |a Powers, David L.,  |e author. 
245 1 0 |a Boundary value problems :  |b and partial differential equations /  |c David L. Powers. 
250 |a 5th ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier Academic Press,  |c ©2006. 
300 |a 1 online resource (xi, 501 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 433-434) and index. 
505 0 |a Cover -- Contents -- Preface -- Chapter 0. Ordinary Differential Equations -- 0.1 Homogeneous Linear Equations -- 0.2 Nonhomogeneous Linear Equations -- 0.3 Boundary Value Problems -- 0.4 Singular Boundary Value Problems -- 0.5 Green's Functions -- Chapter Review -- Miscellaneous Exercises -- Chapter 1. Fourier Series and Integrals -- 1.1 Periodic Functions and Fourier Series -- 1.2 Arbitrary Period and Half-Range Expansions -- 1.3 Convergence of Fourier Series -- 1.4 Uniform Convergence -- 1.5 Operations on Fourier Series -- 1.6 Mean Error and Convergence in Mean -- 1.7 Proof of Convergence -- 1.8 Numerical Determination of Fourier Coefficients -- 1.9 Fourier Integral -- 1.10 Complex Methods -- 1.11 Applications of Fourier Series and Integrals -- 1.12 Comments and References -- Chapter Review -- Miscellaneous Exercises -- Chapter 2. The Heat Equation -- 2.1 Derivation and Boundary Conditions -- 2.2 Steady-State Temperatures -- 2.3 Example: Fixed End Temperatures -- 2.4 Example: Insulated Bar -- 2.5 Example: Different Boundary Conditions -- 2.6 Example: Convection -- 2.7 Sturm-Liouville Problems -- 2.8 Expansion in Series of Eigenfunctions -- 2.9 Generalities on the Heat Conduction Problem -- 2.10 Semi-Infinite Rod -- 2.11 Infinite Rod -- 2.12 The Error Function -- 2.13 Comments and References -- Chapter Review -- Miscellaneous Exercises -- Chapter 3. The Wave Equation -- 3.1 The Vibrating String -- 3.2 Solution of the Vibrating String Problem -- 3.3 d'Alembert's Solution -- 3.4 One-Dimensional Wave Equation: Generalities -- 3.5 Estimation of Eigenvalues -- 3.6 Wave Equation in Unbounded Regions -- 3.7 Comments and References -- Chapter Review -- Miscellaneous Exercises -- Chapter 4. The Potential Equation -- 4.1 Potential Equation -- 4.2 Potential in a Rectangle -- 4.3 Further Examples for a Rectangle -- 4.4 Potential in Unbounded Regions -- 4.5 Potential in a Disk -- 4.6 Classification and Limitations -- 4.7 Comments and References -- Chapter Review -- Miscellaneous Exercises -- Chapter 5. Higher Dimensions and Other Coordinates -- 5.1 Two-Dimensional Wave Equation: Derivation -- 5.2 Three-Dimensional Heat Equation -- 5.3 Two-Dimensional Heat Equation: Solution -- 5.4 Problems in Polar Coordinates -- 5.5 Bessel's Equation -- 5.6 Temperature in a Cylinder -- 5.7 Vibrations of a Circular Membrane -- 5.8 Some Applications of Bessel Functions -- 5.9 Spherical Coordinates; Legendre Polynomials -- 5.10 Some Applications of Legendre Polynomials -- 5.11 Comments and References -- Chapter Review -- Miscellaneous Exercises -- Chapter 6. Laplace Transform -- 6.1 Definition and Elementary Properties -- 6.2 Partial Fractions and Convolutions -- 6.3 Partial Differential Equations -- 6.4 More Difficult Examples -- 6.5 Comments and References -- Miscellaneous Exercises -- Chapter 7. Numerical Methods -- 7.1 Boundary Value Problems -- 7.2 Heat Problems -- 7.3 Wave Equation -- 7.4 Potential Equation -- 7. 
588 0 |a Print version record. 
520 |a Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Boundary value problems  |v Textbooks. 
650 0 |a Differential equations, Partial  |v Textbooks. 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Boundary value problems  |2 fast 
650 7 |a Differential equations, Partial  |2 fast 
655 7 |a Textbooks  |2 fast 
776 0 8 |i Print version:  |a Powers, David L.  |t Boundary value problems.  |b 5th ed.  |d Amsterdam ; Boston : Elsevier Academic Press, ©2006  |z 0125637381  |z 9780125637381  |w (DLC) 2006271800  |w (OCoLC)66023852 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=187200  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10167083 
938 |a EBSCOhost  |b EBSC  |n 187200 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 96145 
938 |a YBP Library Services  |b YANK  |n 2559574 
994 |a 92  |b IZTAP