Database modeling & design : logical design /
Database systems and database design technology have undergone significant evolution in recent years. The relational data model and relational database systems dominate business applications; in turn, they are extended by other technologies like data warehousing, OLAP, and data mining. How do you mo...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam : Boston :
Elsevier ; Morgan Kaufmann Publishers,
2005.
|
Edición: | 4th ed. |
Colección: | Morgan Kaufmann series in data management systems.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- Organization
- Typographical Conventions
- Acknowledgments
- Solutions Manual
- 1 Introduction
- 1.1 Data and Database Management
- 1.2 The Database Life Cycle
- 1.3 Conceptual Data Modeling
- 1.4 Summary
- 1.5 Literature Summary
- 2 The Entity-Relationship Model
- 2.1 Fundamental ER Constructs
- 2.1.1 Basic Objects: Entities, Relationships, Attributes
- 2.1.2 Degree of a Relationship
- 2.1.3 Connectivity of a Relationship
- 2.1.4 Attributes of a Relationship
- 2.1.5 Existence of an Entity in a Relationship
- 2.1.6 Alternative Conceptual Data Modeling Notations
- 2.2 Advanced ER Constructs
- 2.2.1 Generalization: Supertypes and Subtypes
- 2.2.2 Aggregation
- 2.2.3 Ternary Relationships
- 2.2.4 General n-ary Relationships
- 2.2.5 Exclusion Constraint
- 2.2.6 Referential Integrity
- 2.3 Summary
- 2.4 Literature Summary
- 3 The Unified Modeling Language (UML)
- 3.1 Class Diagrams
- 3.1.1 Basic Class Diagram Notation
- 3.1.2 Class Diagrams for Database Design
- 3.1.3 Example from the Music Industry
- 3.2 Activity Diagrams
- 3.2.1 Activity Diagram Notation Description
- 3.2.2 Activity Diagrams for Workflow
- 3.3 Rules of Thumb for UML Usage
- 3.4 Summary
- 3.5 Literature Summary
- 4 Requirements Analysis and Conceptual Data Modeling
- 4.1 Introduction
- 4.2 Requirements Analysis
- 4.3 Conceptual Data Modeling
- 4.3.1 Classify Entities and Attributes
- 4.3.2 Identify the Generalization Hierarchies
- 4.3.3 Define Relationships
- 4.3.4 Example of Data Modeling: Company Personnel and Project Database
- 4.4 View Integration
- 4.4.1 Preintegration Analysis
- 4.4.2 Comparison of Schemas
- 4.4.3 Conformation of Schemas
- 4.4.4 Merging and Restructuring of Schemas
- 4.4.5 Example of View Integration
- 4.5 Entity Clustering for ER Models
- 4.5.1 Clustering Concepts
- 4.5.2 Grouping Operations
- 4.5.3 Clustering Technique
- 4.6 Summary
- 4.7 Literature Summary
- 5 Transforming the Conceptual Data Model to SQL
- 5.1 Transformation Rules and SQL Constructs
- 5.1.1 Binary Relationships
- 5.1.2 Binary Recursive Relationships
- 5.1.3 Ternary and n-ary Relationships
- 5.1.4 Generalization and Aggregation
- 5.1.5 Multiple Relationships
- 5.1.6 Weak Entities
- 5.2 Transformation Steps
- 5.2.1 Entity Transformation
- 5.2.2 Many-to-Many Binary Relationship Transformation
- 5.2.3 Ternary Relationship Transformation
- 5.2.4 Example of ER-to-SQL Transformation
- 5.3 Summary
- 5.4 Literature Summary
- 6 Normalization
- 6.1 Fundamentals of Normalization
- 6.1.1 First Normal Form
- 6.1.2 Superkeys, Candidate Keys, and Primary Keys
- 6.1.3 Second Normal Form
- 6.1.4 Third Normal Form
- 6.1.5 Boyce-Codd Normal Form
- 6.2 The Design of Normalized Tables: A Simple Example
- 6.3 Normalizati.