Introduction to applied statistical signal analysis : guide to biomedical and electrical engineering applications /
Introduction to Applied Statistical Signal Analysis is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier Academic Press,
©2007.
|
Edición: | 3rd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Copyright Page
- Table of Contents
- Preface
- Dedication
- Acknowledgments
- List of symbols
- Chapter 1 Introduction and terminology
- 1.1 Introduction
- 1.2 Signal terminology
- 1.2.1 Domain Types
- 1.2.2 Amplitude Types
- 1.2.3 Basic Signal Forms
- 1.2.4 The Transformed Domain-The Frequency Domain
- 1.2.5 General Amplitude Properties
- 1.3 Analog to digital conversion
- 1.4 Measures of signal properties
- 1.4.1 Time Domain
- 1.4.2 Frequency Domain
- References
- Chapter 2 Empirical modeling and approximation
- 2.1 Introduction
- 2.2 Model development
- 2.3 Generalized least squares
- 2.4 Generalities
- 2.5 Models from linearization
- 2.6 Orthogonal polynomials
- 2.7 Interpolation and extrapolation
- 2.7.1 Lagrange Polynomials
- 2.7.2 Spline Interpolation
- 2.8 Overview
- References
- Exercises
- Chapter 3 Fourier analysis
- 3.1 Introduction
- 3.2 Review of fourier series
- 3.2.1 Definition
- 3.2.2 Convergence
- 3.3 Overview of fourier transform relationships
- 3.3.1 Continuous versus Discrete Time
- 3.3.2 Discrete Time and Frequency
- 3.4 Discrete fourier transform
- 3.4.1 Definition Continued
- 3.4.2 Partial Summary of DFT Properties and Theorems
- 3.5 Fourier analysis
- 3.5.1 Frequency Range and Scaling
- 3.5.2 The Effect of Discretizing Frequency
- 3.5.3 The Effect of Truncation
- 3.5.4 Windowing
- 3.5.5 Resolution
- 3.5.6 Detrending
- 3.6 Procedural summary
- 3.7 Selected applications
- References
- Exercises
- Appendices
- Appendix 3.1 DFT of ionosphere data
- Appendix 3.2 Review of properties of orthogonal functions
- Appendix 3.3 The fourier transform
- Appendix 3.4 Data and spectral windows
- Chapter 4 Probability concepts and signal characteristics
- 4.1 Introduction
- 4.2 Introduction to random variables
- 4.2.1 Probability Descriptors
- 4.2.2 Moments of Random Variables
- 4.2.3 Gaussian Random Variable
- 4.3 Joint probability
- 4.3.1 Bivariate Distributions
- 4.3.2 Moments of Bivariate Distributions
- 4.4 Concept of sampling and estimation
- 4.4.1 Sample Moments
- 4.4.2 Significance of the Estimate
- 4.5 Density function estimation
- 4.5.1 General Principle for χ2 Approach
- 4.5.2 Detailed Procedure for χ2 Approach
- 4.5.3 Quantile-Quantile Approach
- 4.6 Correlation and regression
- 4.6.1 Estimate of Correlation
- 4.6.2 Simple Regression Model
- 4.7 General properties of estimators
- 4.7.1 Convergence
- 4.7.2 Recursion
- 4.7.3 Maximum Likelihood Estimation
- 4.8 Random numbers and signal characteristics
- 4.8.1 Random Number Generation
- 4.8.2 Change of Mean and Variance
- 4.8.3 Density Shaping
- References
- Exercises
- Appendices
- Appendix 4.1 Plots and formulas for five probability density functions
- Chapter 5 Introduction to random processes and signal properties
- 5.1 Introduction
- 5.