Cargando…

Introduction to applied statistical signal analysis : guide to biomedical and electrical engineering applications /

Introduction to Applied Statistical Signal Analysis is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shiavi, Richard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier Academic Press, ©2007.
Edición:3rd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Copyright Page
  • Table of Contents
  • Preface
  • Dedication
  • Acknowledgments
  • List of symbols
  • Chapter 1 Introduction and terminology
  • 1.1 Introduction
  • 1.2 Signal terminology
  • 1.2.1 Domain Types
  • 1.2.2 Amplitude Types
  • 1.2.3 Basic Signal Forms
  • 1.2.4 The Transformed Domain-The Frequency Domain
  • 1.2.5 General Amplitude Properties
  • 1.3 Analog to digital conversion
  • 1.4 Measures of signal properties
  • 1.4.1 Time Domain
  • 1.4.2 Frequency Domain
  • References
  • Chapter 2 Empirical modeling and approximation
  • 2.1 Introduction
  • 2.2 Model development
  • 2.3 Generalized least squares
  • 2.4 Generalities
  • 2.5 Models from linearization
  • 2.6 Orthogonal polynomials
  • 2.7 Interpolation and extrapolation
  • 2.7.1 Lagrange Polynomials
  • 2.7.2 Spline Interpolation
  • 2.8 Overview
  • References
  • Exercises
  • Chapter 3 Fourier analysis
  • 3.1 Introduction
  • 3.2 Review of fourier series
  • 3.2.1 Definition
  • 3.2.2 Convergence
  • 3.3 Overview of fourier transform relationships
  • 3.3.1 Continuous versus Discrete Time
  • 3.3.2 Discrete Time and Frequency
  • 3.4 Discrete fourier transform
  • 3.4.1 Definition Continued
  • 3.4.2 Partial Summary of DFT Properties and Theorems
  • 3.5 Fourier analysis
  • 3.5.1 Frequency Range and Scaling
  • 3.5.2 The Effect of Discretizing Frequency
  • 3.5.3 The Effect of Truncation
  • 3.5.4 Windowing
  • 3.5.5 Resolution
  • 3.5.6 Detrending
  • 3.6 Procedural summary
  • 3.7 Selected applications
  • References
  • Exercises
  • Appendices
  • Appendix 3.1 DFT of ionosphere data
  • Appendix 3.2 Review of properties of orthogonal functions
  • Appendix 3.3 The fourier transform
  • Appendix 3.4 Data and spectral windows
  • Chapter 4 Probability concepts and signal characteristics
  • 4.1 Introduction
  • 4.2 Introduction to random variables
  • 4.2.1 Probability Descriptors
  • 4.2.2 Moments of Random Variables
  • 4.2.3 Gaussian Random Variable
  • 4.3 Joint probability
  • 4.3.1 Bivariate Distributions
  • 4.3.2 Moments of Bivariate Distributions
  • 4.4 Concept of sampling and estimation
  • 4.4.1 Sample Moments
  • 4.4.2 Significance of the Estimate
  • 4.5 Density function estimation
  • 4.5.1 General Principle for χ2 Approach
  • 4.5.2 Detailed Procedure for χ2 Approach
  • 4.5.3 Quantile-Quantile Approach
  • 4.6 Correlation and regression
  • 4.6.1 Estimate of Correlation
  • 4.6.2 Simple Regression Model
  • 4.7 General properties of estimators
  • 4.7.1 Convergence
  • 4.7.2 Recursion
  • 4.7.3 Maximum Likelihood Estimation
  • 4.8 Random numbers and signal characteristics
  • 4.8.1 Random Number Generation
  • 4.8.2 Change of Mean and Variance
  • 4.8.3 Density Shaping
  • References
  • Exercises
  • Appendices
  • Appendix 4.1 Plots and formulas for five probability density functions
  • Chapter 5 Introduction to random processes and signal properties
  • 5.1 Introduction
  • 5&#4.