Thermodynamic formalism : the mathematical structures of equilibrium statistical mechanics /
Reissued in the Cambridge Mathematical Library this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. It is aimed at mathematicians interested in ergodic theory, topological...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2004.
|
Edición: | 2nd ed. |
Colección: | Cambridge mathematical library.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title
- Series-title
- Title
- Copyright
- Dedication
- Contents
- Foreword to the first edition
- Preface to the first edition
- Preface to the second edition
- References
- Introduction
- 0.1 Generalities
- 0.2 Description of the thermodynamic formalism
- I. Finite systems
- II. Thermodynamic formalism on a metrizable compact set
- III. Statistical mechanics on a lattice
- 0.3 Summary of contents
- 1 Theory of Gibbs states
- 1.1 Configuration space
- 1.2 Interactions
- 1.3 Gibbs ensembles and thermodynamic limit
- 1.4 Proposition
- 1.5 Gibbs states.
- 1.6 Thermodynamic limit of Gibbs ensembles
- 1.7 Boundary terms
- 1.8 Theorem
- 1.9 Theorem
- 1.10 Algebra at infinity
- 1.11 Theorem (characterization of pure Gibbs states)
- 1.12 The operators
- 1.13 Theorem (characterization of unique Gibbs states)
- 1.14 Remark
- Notes
- Exercises
- 2 Gibbs states: complements
- 2.1 Morphisms of lattice systems
- 2.2 Example
- 2.3 The interaction F Phi
- 2.4 Lemma
- 2.5 Proposition
- 2.6 Remarks
- 2.7 Systems of conditional probabilities
- 2.8 Properties of Gibbs states
- 2.9 Remark
- Notes
- Exercises.
- 3 Translation invariance. Theory ofequilibrium states
- 3.1 Translation invariance
- 3.2 The function APhi
- 3.3 Partition functions
- 3.4 Theorem
- 3.5 Invariant states
- 3.6 Proposition
- 3.7 Theorem
- 3.8 Entropy
- 3.9 Infinite limit in the sense of van Hove
- 3.10 Theorem
- 3.11 Lemma
- 3.12 Theorem
- 3.13 Corollary
- 3.14 Corollary
- 3.15 Physical interpretation
- 3.16 Theorem
- 3.17 Corollary
- 3.18 Approximation of invariant states by equilibrium states
- 3.19 Lemma
- 3.20 Theorem
- 3.21 Coexistence of phases
- Notes
- Exercises.
- 4 Connection between Gibbs statesand Equilibrium states
- 4.1 Generalities
- 4.2 Theorem
- 4.3 Physical interpretation
- 4.4 Proposition
- 4.5 Remark
- 4.6 Strict convexity of the pressure
- 4.7 Proposition
- 4.8 Z-lattice systems and Z-morphisms
- 4.9 Proposition
- 4.10 Corollary
- 4.11 Remark
- 4.12 Proposition
- 4.13 Restriction of Z to a subgroup G
- 4.14 Proposition
- 4.15 Undecidability and non-periodicity
- Notes
- Exercises
- 5 One-dimensional systems
- 5.1 Lemma
- 5.2 Theorem
- 5.3 Theorem
- 5.4 Lemma
- 5.5 Proof of theorems 5.2 and 5.3.
- 5.6 Corollaries to theorems 5.2 and 5.3
- 5.7 Theorem
- 5.8 Mixing Z-lattice systems
- 5.9 Lemma
- 5.10 Theorem
- 5.11 The transfer matrix and the operator
- 5.12 The function Psi>
- 5.13 Proposition
- 5.14 The operator
- 5.15 Lemma
- 5.16 Proposition
- 5.17 Remark
- 5.18 Exponentially decreasing interactions
- 5.19 The space and related spaces
- 5.20 Proposition
- 5.21 Theorem
- 5.22 Remarks
- 5.23 Lemma
- 5.24 Proposition
- 5.25 Remark
- 5.26 Theorem
- 5.27 Corollary
- 5.28 Zeta functions
- 5.29 Theorem
- Notes
- Exercises
- 6 Extension of the thermodynamic formalism.