Cargando…

Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups /

Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ovsienko, Valentin
Otros Autores: Tabachnikov, Serge
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2005.
Colección:Cambridge tracts in mathematics ; 165.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm82365929
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 070208s2005 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d OSU  |d AU@  |d E7B  |d OKU  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCO  |d COO  |d OCLCQ  |d UAB  |d OCLCQ  |d UIU  |d K6U  |d OCLCQ  |d OCLCO  |d DGN  |d UKAHL  |d INARC  |d OCLCO  |d OCLCQ 
019 |a 144226642  |a 171125349  |a 213370176  |a 271789258  |a 552965307  |a 648129043  |a 1285740703 
020 |a 9780511265785  |q (electronic bk.) 
020 |a 0511265786  |q (electronic bk.) 
020 |a 0521831865  |q (hardback) 
020 |a 9780521831864  |q (hardback) 
020 |a 0511263503  |q (ebook) 
020 |a 9780511263507  |q (ebook) 
020 |a 0511265069  |q (electronic bk.) 
020 |a 9780511265068  |q (electronic bk.) 
020 |a 9780511543142 
020 |a 051154314X 
029 1 |a AU@  |b 000042832636 
029 1 |a AU@  |b 000062572822 
029 1 |a YDXCP  |b 2520642 
035 |a (OCoLC)82365929  |z (OCoLC)144226642  |z (OCoLC)171125349  |z (OCoLC)213370176  |z (OCoLC)271789258  |z (OCoLC)552965307  |z (OCoLC)648129043  |z (OCoLC)1285740703 
050 4 |a QA660  |b .O87 2005eb 
072 7 |a MAT  |x 012030  |2 bisacsh 
082 0 4 |a 516.3/6  |2 22 
049 |a UAMI 
100 1 |a Ovsienko, Valentin. 
245 1 0 |a Projective differential geometry old and new :  |b from the Schwarzian derivative to the cohomology of diffeomorphism groups /  |c V. Ovsienko, S. Tabachnikov. 
260 |a Cambridge, UK ;  |a New York :  |b Cambridge University Press,  |c 2005. 
300 |a 1 online resource (xi, 249 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge tracts in mathematics ;  |v 165 
504 |a Includes bibliographical references (pages 236-246) and index. 
588 0 |a Print version record. 
505 0 0 |g 1.  |t Introduction --  |g 2.  |t The Geometry of the projective line --  |g 3.  |t The Algebra of the projective line and cohomology of Diff(S1) --  |g 4.  |t Vertices of projective curves --  |g 5.  |t Projective invariants of submanifolds --  |g 6.  |t Projective structures on smooth manifolds --  |g 7.  |t Multi-dimensional Schwarzian derivatives and differential operators --  |g Appendix 1.  |t Five proofs of the Sturm theorem  |g Appendix 2.  |t The Language of symplectic and contact geometry --  |g Appendix 3.  |t The Language of connections --  |g Appendix 4.  |t The Language of homological algebra --  |g Appendix 5.  |t Remarkable cocycles on groups of diffeomorphisms --  |g Appendix 6.  |t The Godbillon-Vey class --  |g Appendix 7.  |t The Adler-Gelfand-Dickey bracket and infinite-dimensional Poisson geometry. 
520 |a Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and proofs of classic theorems. Exercises play a prominent role: historical and cultural comments set the basic notions in a broader context. The book opens by discussing the Schwarzian derivative and its connection to the Virasoro algebra. One-dimensional projective differential geometry features strongly. Related topics include differential operators, the cohomology of the group of diffeomorphisms of the circle, and the classical four-vertex theorem. The classical theory of projective hypersurfaces is surveyed and related to some very recent results and conjectures. A final chapter considers various versions of multi-dimensional Schwarzian derivative. In sum, here is a rapid route for graduate students and researchers to the frontiers of current research in this evergreen subject. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Projective differential geometry. 
650 6 |a Géométrie différentielle projective. 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Projective differential geometry.  |2 fast  |0 (OCoLC)fst01078837 
700 1 |a Tabachnikov, Serge. 
776 0 8 |i Print version:  |a Ovsienko, Valentin.  |t Projective differential geometry old and new.  |d Cambridge, UK ; New York : Cambridge University Press, 2005  |z 0521831865  |z 9780521831864  |w (DLC) 2004045919  |w (OCoLC)54953058 
830 0 |a Cambridge tracts in mathematics ;  |v 165. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=181813  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13422892 
938 |a ebrary  |b EBRY  |n ebr10158220 
938 |a EBSCOhost  |b EBSC  |n 181813 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 74982 
938 |a Internet Archive  |b INAR  |n projectivediffer0000ovsi 
938 |a YBP Library Services  |b YANK  |n 2592718 
938 |a YBP Library Services  |b YANK  |n 3275891 
938 |a YBP Library Services  |b YANK  |n 2520642 
994 |a 92  |b IZTAP