Cargando…

The geometry of efficient fair division /

What is the best way to divide a 'cake' and allocate the pieces among some finite collection of players? In this book, the cake is a measure space, and each player uses a countably additive, non-atomic probability measure to evaluate the size of the pieces of cake, with different players g...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barbanel, Julius B., 1951-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2005.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Introduction / Alan D. Taylor
  • 1. Notation and preliminaries
  • 2. Geometric object #1a : the individual pieces set (IPS) for two players
  • 3. What the IPS tells us about fairness and efficiency in the two-player context
  • 4. The individual pieces set (IPS) and the full individual pieces set (FIPS) for the general n-player context
  • 5. What the IPS and the FIPS tell us about fairness and efficiency in the general n-player context
  • 6. Characterizing Pareto optimality : introduction and preliminary ideas
  • 7. Characterizing Pareto optimality I : the IPS and optimization of convex combinations of measures
  • 8. Characterizing Pareto optimality II : partition ratios
  • 9. Geometric object #2 : the Radon-Nikodym set (RNS)
  • 10. Characterizing Pareto optimality III : the RNS, Weller's construction, and w-association
  • 11. The shape of the IPS
  • 12. The relationship between the IPS and the RNS
  • 13. Other issues involving Weller's construction, partition ratios, and Pareto optimality
  • 14. Strong Pareto optimality
  • 15. Characterizing Pareto optimality using hyperreal numbers
  • 16. Geometric object #1d : the multicake individual pieces set (MIPS) symmetry restored.