Cargando…

The geometry of efficient fair division /

What is the best way to divide a 'cake' and allocate the pieces among some finite collection of players? In this book, the cake is a measure space, and each player uses a countably additive, non-atomic probability measure to evaluate the size of the pieces of cake, with different players g...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barbanel, Julius B., 1951-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2005.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 EBSCO_ocm62325596
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 051122s2005 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d YDXCP  |d OCLCG  |d OCLCQ  |d E7B  |d OCLCQ  |d TUU  |d OCLCQ  |d OCLCO  |d AU@  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d SLY  |d MNU  |d CAMBR  |d OL$  |d OCLCQ  |d EBLCP  |d OCLCQ  |d HTC  |d OCLCQ  |d WY@  |d COO  |d LUE  |d STF  |d OCLCQ  |d K6U  |d OCLCQ  |d UKAHL  |d OCLCO  |d ANO  |d OCLCQ  |d OCLCO 
019 |a 271790721  |a 668204316  |a 814388317  |a 819633306  |a 824547295  |a 845016682  |a 880334801  |a 1035706006 
020 |a 0511109857  |q (electronic bk.) 
020 |a 9780511109850  |q (electronic bk.) 
020 |a 9780511546679  |q (electronic bk.) 
020 |a 051154667X  |q (electronic bk.) 
020 |z 0521842484  |q (Cloth) 
020 |z 1280415894 
020 |z 9781280415890 
029 1 |a AU@  |b 000042833316 
029 1 |a AU@  |b 000048763369 
035 |a (OCoLC)62325596  |z (OCoLC)271790721  |z (OCoLC)668204316  |z (OCoLC)814388317  |z (OCoLC)819633306  |z (OCoLC)824547295  |z (OCoLC)845016682  |z (OCoLC)880334801  |z (OCoLC)1035706006 
050 4 |a QA165  |b .B37 2005eb 
072 7 |a MAT  |x 022000  |2 bisacsh 
072 7 |a PBM  |2 bicssc 
082 0 4 |a 512.7/3  |2 22 
084 |a O157  |2 clc 
049 |a UAMI 
100 1 |a Barbanel, Julius B.,  |d 1951- 
245 1 4 |a The geometry of efficient fair division /  |c Julius B. Barbanel ; with an introduction by Alan D. Taylor. 
260 |a Cambridge, UK ;  |a New York :  |b Cambridge University Press,  |c 2005. 
300 |a 1 online resource (ix, 462 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 451-452) and index. 
588 0 |a Print version record. 
520 |a What is the best way to divide a 'cake' and allocate the pieces among some finite collection of players? In this book, the cake is a measure space, and each player uses a countably additive, non-atomic probability measure to evaluate the size of the pieces of cake, with different players generally using different measures. The author investigates efficiency properties (is there another partition that would make everyone at least as happy, and would make at least one player happier, than the present partition?) and fairness properties (do all players think that their piece is at least as large as every other player's piece?). He focuses exclusively on abstract existence results rather than algorithms, and on the geometric objects that arise naturally in this context. By examining the shape of these objects and the relationship between them, he demonstrates results concerning the existence of efficient and fair partitions. 
505 0 0 |g Introduction /  |r Alan D. Taylor --  |g 1.  |t Notation and preliminaries --  |g 2.  |t Geometric object #1a : the individual pieces set (IPS) for two players --  |g 3.  |t What the IPS tells us about fairness and efficiency in the two-player context --  |g 4.  |t The individual pieces set (IPS) and the full individual pieces set (FIPS) for the general n-player context --  |g 5.  |t What the IPS and the FIPS tell us about fairness and efficiency in the general n-player context --  |g 6.  |t Characterizing Pareto optimality : introduction and preliminary ideas --  |g 7.  |t Characterizing Pareto optimality I : the IPS and optimization of convex combinations of measures --  |g 8.  |t Characterizing Pareto optimality II : partition ratios --  |g 9.  |t Geometric object #2 : the Radon-Nikodym set (RNS) --  |g 10.  |t Characterizing Pareto optimality III : the RNS, Weller's construction, and w-association --  |g 11.  |t The shape of the IPS --  |g 12.  |t The relationship between the IPS and the RNS --  |g 13.  |t Other issues involving Weller's construction, partition ratios, and Pareto optimality --  |g 14.  |t Strong Pareto optimality --  |g 15.  |t Characterizing Pareto optimality using hyperreal numbers --  |g 16.  |t Geometric object #1d : the multicake individual pieces set (MIPS) symmetry restored. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Partitions (Mathematics) 
650 6 |a Partitions (Mathématiques) 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 0 7 |a Partitions (Mathematics)  |2 cct 
650 7 |a Partitions (Mathematics)  |2 fast 
776 0 8 |i Print version:  |a Barbanel, Julius B., 1951-  |t Geometry of efficient fair division.  |d Cambridge, UK ; New York : Cambridge University Press, 2005  |z 0521842484  |w (DLC) 2004045928  |w (OCoLC)54972740 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=132259  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13423238 
938 |a EBL - Ebook Library  |b EBLB  |n EBL228781 
938 |a ebrary  |b EBRY  |n ebr10429328 
938 |a EBSCOhost  |b EBSC  |n 132259 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 41589 
938 |a YBP Library Services  |b YANK  |n 7656667 
938 |a YBP Library Services  |b YANK  |n 3276219 
938 |a YBP Library Services  |b YANK  |n 2366942 
994 |a 92  |b IZTAP