Cargando…

The Lévy Laplacian /

The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well-developed in recent years and this book is the first systematic treatment. With an extensive bibliography, the work will be valued by those working in functional analysis,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Feller, M. N. (Mikhail Naumovich), 1928-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2005.
Colección:Cambridge tracts in mathematics ; 166.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 EBSCO_ocm62294789
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 051117s2005 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d YDXCP  |d OCLCQ  |d OCLCG  |d OCLCQ  |d E7B  |d OCLCQ  |d TUU  |d OCLCQ  |d TEFOD  |d NRU  |d OCLCQ  |d OCLCO  |d OCLCQ  |d CAMBR  |d DEBSZ  |d OCLCQ  |d OL$  |d SLY  |d OCLCF  |d TEFOD  |d EBLCP  |d OCLCQ  |d HEBIS  |d OCLCO  |d WY@  |d LUE  |d UAB  |d STF  |d OCLCQ  |d AU@  |d OCLCQ  |d S8J  |d OCLCQ  |d UKAHL  |d OCLCO  |d ANO  |d OCLCQ 
019 |a 63518191  |a 149642023  |a 171137634  |a 668199556  |a 852652011  |a 880334629  |a 1024267732  |a 1035650323 
020 |a 0511132808  |q (electronic bk.) 
020 |a 9780511132803  |q (electronic bk.) 
020 |a 0511131445  |q (electronic bk.) 
020 |a 9780511131448  |q (electronic bk.) 
020 |a 9780511543029  |q (electronic bk.) 
020 |a 0511543026  |q (electronic bk.) 
020 |z 0521846226 
020 |z 9780521846226 
020 |z 0511132263 
020 |z 9780511132261 
029 1 |a AU@  |b 000062552456 
029 1 |a DEBSZ  |b 379294028 
035 |a (OCoLC)62294789  |z (OCoLC)63518191  |z (OCoLC)149642023  |z (OCoLC)171137634  |z (OCoLC)668199556  |z (OCoLC)852652011  |z (OCoLC)880334629  |z (OCoLC)1024267732  |z (OCoLC)1035650323 
037 |b OverDrive, Inc.  |n http://www.overdrive.com 
037 |a DE283C88-BD06-4E3C-994A-4946CB019C5B  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QC20.7.D5  |b F45 2005eb 
072 7 |a MAT  |x 037000  |2 bisacsh 
082 0 4 |a 515/.7242  |2 22 
084 |a O175. 3  |2 clc 
049 |a UAMI 
100 1 |a Feller, M. N.  |q (Mikhail Naumovich),  |d 1928- 
245 1 4 |a The Lévy Laplacian /  |c M.N. Feller. 
260 |a Cambridge, UK ;  |a New York :  |b Cambridge University Press,  |c 2005. 
300 |a 1 online resource (vi, 153 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge tracts in mathematics ;  |v 166 
504 |a Includes bibliographical references (pages 144-151) and index. 
588 0 |a Print version record. 
505 0 |a Cover; Half-title; Series-title; Title; Copyright; Contents; Introduction; 1 The Lévy Laplacian; 2 Lévy-Laplace operators; 3 Symmetric Lévy-Laplace operator; 4 Harmonic functions of infinitely many variables; 5 Linear elliptic and parabolic equations with Lévy Laplacians; 6 Quasilinear and nonlinear elliptic equations with Lévy Laplacians; 7 Nonlinear parabolic equations with Lévy Laplacians; Appendix Lévy-Dirichlet forms and associated Markov processes; Bibliographic notes; References; Index. 
520 |a The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well-developed in recent years and this book is the first systematic treatment. With an extensive bibliography, the work will be valued by those working in functional analysis, partial differential equations and probability theory. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Laplacian operator. 
650 0 |a Lévy processes. 
650 0 |a Harmonic functions. 
650 6 |a Laplacien. 
650 6 |a Lévy, Processus de. 
650 6 |a Fonctions harmoniques. 
650 7 |a MATHEMATICS  |x Functional Analysis.  |2 bisacsh 
650 0 7 |a Levy processes.  |2 cct 
650 0 7 |a Harmonic functions.  |2 cct 
650 0 7 |a Laplacian operator.  |2 cct 
650 7 |a Harmonic functions.  |2 fast  |0 (OCoLC)fst00951500 
650 7 |a Laplacian operator.  |2 fast  |0 (OCoLC)fst00992600 
650 7 |a Lévy processes.  |2 fast  |0 (OCoLC)fst01004416 
650 7 |a Laplace-Operator  |2 gnd 
650 7 |a Partieller Differentialoperator  |2 gnd 
650 7 |a Dimension unendlich  |2 gnd 
776 0 8 |i Print version:  |a Feller, M.N. (Mikhail Naumovich), 1928-  |t Lévy Laplacian.  |d Cambridge, UK ; New York : Cambridge University Press, 2005  |z 0521846226  |w (DLC) 2004054632  |w (OCoLC)56032938 
830 0 |a Cambridge tracts in mathematics ;  |v 166. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=142706  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13422880 
938 |a EBL - Ebook Library  |b EBLB  |n EBL241090 
938 |a ebrary  |b EBRY  |n ebr10429081 
938 |a EBSCOhost  |b EBSC  |n 142706 
938 |a YBP Library Services  |b YANK  |n 2618899 
938 |a YBP Library Services  |b YANK  |n 3275879 
938 |a YBP Library Services  |b YANK  |n 7656716 
938 |a YBP Library Services  |b YANK  |n 2302003 
994 |a 92  |b IZTAP