Cargando…

Causation, prediction, and search.

The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment. What assumptions and methods allow us to turn observations into causal knowledge, an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Spirtes, Peter
Otros Autores: Glymour, Clark N., Scheines, Richard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, ©2000.
©2000
Edición:2nd ed. /
Colección:Adaptive computation and machine learning.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocm61677955
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 050921s2000 maua obs 001 0 eng d
010 |z  00026266  
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d CUS  |d YUS  |d MYG  |d HVC  |d ZCU  |d COO  |d YDXCP  |d OCLCQ  |d VT2  |d OCLCQ  |d RRP  |d VTS  |d CEF  |d AGLDB  |d OCLCQ  |d MITPR  |d YOU  |d STF  |d M8D  |d EBLCP  |d UKAHL  |d OCLCO  |d OCLCQ  |d COA 
019 |a 61658076  |a 508208521  |a 961894181  |a 1087466055  |a 1128713166  |a 1129191918  |a 1167736145  |a 1286902463  |a 1340105770 
020 |a 9780262284158  |q (electronic bk.) 
020 |a 0262284154  |q (electronic bk.) 
020 |a 0262194406 
020 |a 9780262194402 
024 8 |a (WaSeSS)ssj0000118919 
029 1 |a AU@  |b 000051353955 
029 1 |a AU@  |b 000073109923 
029 1 |a DEBBG  |b BV043152918 
029 1 |a DEBSZ  |b 422307874 
029 1 |a GBVCP  |b 801339979 
029 1 |a NZ1  |b 13074117 
035 |a (OCoLC)61677955  |z (OCoLC)61658076  |z (OCoLC)508208521  |z (OCoLC)961894181  |z (OCoLC)1087466055  |z (OCoLC)1128713166  |z (OCoLC)1129191918  |z (OCoLC)1167736145  |z (OCoLC)1286902463  |z (OCoLC)1340105770 
037 |a 1754  |b MIT Press 
037 |a 9780262284158  |b MIT Press 
050 4 |a QA276  |b .S65 2000eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.5  |2 22 
049 |a UAMI 
100 1 |a Spirtes, Peter. 
245 1 0 |a Causation, prediction, and search. 
250 |a 2nd ed. /  |b Peter Spirtes, Clark Glymour, and Richard Scheines ; with additional material by David Heckerman [and others]. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c ©2000. 
264 4 |c ©2000 
300 |a 1 online resource (xxi, 543 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
490 1 |a Adaptive computation and machine learning 
504 |a Includes bibliographical references (pages 495-529) and index. 
588 0 |a Print version record. 
505 0 0 |g 1.  |t Introduction and advertisement --  |g 2.  |t Formal preliminaries --  |g 3.  |t Causation and prediction : axioms and explications --  |g 4.  |t Statistical indistinguishability --  |g 5.  |t Discovery algorithms for causally sufficient structures --  |g 6.  |t Discovery algorithms without causal sufficiency --  |g 7.  |t Prediction --  |g 8.  |t Regression, causation, and prediction --  |g 9.  |t The design of empirical studies --  |g 10.  |t The structure of the unobserved --  |g 11.  |t Elaborating linear theories with unmeasured variables --  |g 12.  |t Prequels and sequels --  |g 13.  |t Proofs of theorems. 
520 |a The authors address the assumptions and methods that allow us to turn observations into causal knowledge, and use even incomplete causal knowledge in planning and prediction to influence and control our environment. What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences. The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables. The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection. The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical statistics. 
650 6 |a Statistique mathématique. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Mathematical statistics.  |2 fast  |0 (OCoLC)fst01012127 
653 |a COMPUTER SCIENCE/General 
700 1 |a Glymour, Clark N. 
700 1 |a Scheines, Richard. 
776 0 8 |i Print version:  |a Spirtes, Peter.  |t Causation, prediction, and search.  |b 2nd ed.  |d Cambridge, Mass. : MIT Press, ©2000  |z 0262194406  |w (DLC) 00026266  |w (OCoLC)43555387 
830 0 |a Adaptive computation and machine learning. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138589  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37586819 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5965893 
938 |a EBSCOhost  |b EBSC  |n 138589 
938 |a YBP Library Services  |b YANK  |n 2363577 
938 |a YBP Library Services  |b YANK  |n 3411313 
994 |a 92  |b IZTAP