Analytic number theory : an introductory course /
This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("a...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New Jersey :
World Scientific,
©2004.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- Chapter 1 Introduction
- 1.1 Three problems
- 1.2 Asymmetric distribution of quadratic residues
- 1.3 The prime number theorem
- 1.4 Density of squarefree integers
- 1.5 The Riemann zeta function
- 1.6 Notes
- Chapter 2 Calculus of Arithmetic Functions
- 2.1 Arithmetic functions and convolution
- 2.2 Inverses
- 2.3 Convergence
- 2.4 Exponential mapping
- 2.4.1 The 1 function as an exponential
- 2.4.2 Powers and roots
- 2.5 Multiplicative functions
- 2.6 Notes
- Chapter 3 Summatory Functions
- 3.1 Generalities
- 3.2 Estimate of Q(x) 6x/2
- 3.3 Riemann-Stieltjes integrals
- 3.4 Riemann-Stieltjes integrators
- 3.4.1 Convolution of integrators
- 3.4.2 Generalization of results on arithmetic functions
- 3.5 Stability
- 3.6 Dirichlets hyperbola method
- 3.7 Notes
- Chapter 4 The Distribution of Prime Numbers
- 4.1 General remarks
- 4.2 The Chebyshev function
- 4.3 Mertens estimates
- 4.4 Convergent sums over primes
- 4.5 A lower estimate for Eulers function
- 4.6 Notes
- Chapter 5 An Elementary Proof of the P.N.T.
- 5.1 Selbergs formula
- 5.1.1 Features of Selbergs formula
- 5.2 Transformation of Selbergs formula
- 5.2.1 Calculus for R
- 5.3 Deduction of the P.N.T.
- 5.4 Propositions 8220;equivalent to the P.N.T.
- 5.5 Some consequences of the P.N.T.
- 5.6 Notes
- Chapter 6 Dirichlet Series and Mellin Transforms
- 6.1 The use of transforms
- 6.2 Euler products
- 6.3 Convergence
- 6.3.1 Abscissa of convergence
- 6.3.2 Abscissa of absolute convergence
- 6.4 Uniform convergence
- 6.5 Analyticity
- 6.5.1 Analytic continuation
- 6.5.2 Continuation of zeta
- 6.5.3 Example of analyticity on =
- 6.6 Uniqueness
- 6.6.1 Identifying an arithmetic function
- 6.7 Operational calculus
- 6.8 Landau's oscillation theorem
- 6.9 Notes
- Chapter 7 Inversion Formulas
- 7.1 The use of inversion formulas
- 7.2 The Wiener-Ikehara theorem
- 7.2.1 Example. Counting product representations
- 7.2.2 An O-estimate
- 7.3 A Wiener-Ikehara proof of the P.N.T.
- 7.4 A generalization of the Wiener-Ikehara theorem
- 7.5 The Perron formula
- 7.6 Proof of the Perron formula
- 7.7 Contour deformation in the Perron formula
- 7.7.1 The Fourier series of the sawtooth function
- 7.7.2 Bounded and uniform convergence
- 7.8 A "smoothed" Perron formula
- 7.9 Example. Estimation of [sigma]T(1₂ * 1₃)
- 7.10 Notes
- Chapter 8 The Riemann Zeta Function
- Chapter 9 Primes in Arithmetic Progressions
- Chapter 10 Applications of characters
- Chapter 11 Oscillation theorems
- Chapter 12 Sieves
- Chapter 13 Application of Sieves
- Appendix A. Results from Analysis and Algebra.