Cargando…

Analytic number theory : an introductory course /

This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bateman, P. T.
Otros Autores: Diamond, Harold G., 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, ©2004.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocm61482715
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 050912s2004 njua ob 001 0 eng d
040 |a VVN  |b eng  |e pn  |c VVN  |d OCLCG  |d OCLCQ  |d DKDLA  |d OCLCQ  |d ADU  |d E7B  |d N$T  |d YDXCP  |d IDEBK  |d OCLCQ  |d MERUC  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d KUT  |d OCLCQ  |d AZK  |d LOA  |d COCUF  |d AGLDB  |d SUR  |d MOR  |d PIFBR  |d OCLCQ  |d COO  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d G3B  |d UKAHL  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 59550284  |a 474639328  |a 478361651  |a 489620296  |a 614783073  |a 646732032  |a 722355738  |a 748530921  |a 888582178  |a 961579462  |a 962652474  |a 966100402  |a 984880320  |a 988487883  |a 991991165  |a 1037741850  |a 1038660836  |a 1045490254  |a 1055317259  |a 1064101758  |a 1081189815  |a 1162575973  |a 1259191567 
020 |a 9789812389381 
020 |a 9812389385 
020 |a 9789812560803  |q (pbk.) 
020 |a 9812560807  |q (pbk.) 
020 |a 9812562273  |q (electronic bk.) 
020 |a 9789812562272  |q (electronic bk.) 
020 |z 9812389385 
020 |z 9812560807  |q (pbk.) 
020 |a 1281872253 
020 |a 9781281872258 
020 |a 9786611872250 
020 |a 6611872256 
029 1 |a AU@  |b 000049162650 
029 1 |a AU@  |b 000051450863 
029 1 |a AU@  |b 000053236734 
029 1 |a DEBBG  |b BV043082034 
029 1 |a DEBSZ  |b 422328162 
029 1 |a GBVCP  |b 801337593 
029 1 |a NZ1  |b 12021107 
035 |a (OCoLC)61482715  |z (OCoLC)59550284  |z (OCoLC)474639328  |z (OCoLC)478361651  |z (OCoLC)489620296  |z (OCoLC)614783073  |z (OCoLC)646732032  |z (OCoLC)722355738  |z (OCoLC)748530921  |z (OCoLC)888582178  |z (OCoLC)961579462  |z (OCoLC)962652474  |z (OCoLC)966100402  |z (OCoLC)984880320  |z (OCoLC)988487883  |z (OCoLC)991991165  |z (OCoLC)1037741850  |z (OCoLC)1038660836  |z (OCoLC)1045490254  |z (OCoLC)1055317259  |z (OCoLC)1064101758  |z (OCoLC)1081189815  |z (OCoLC)1162575973  |z (OCoLC)1259191567 
050 4 |a QA241  |b .B38 2004eb 
072 7 |a MAT  |x 022000  |2 bisacsh 
072 7 |a PHQ  |2 bicssc 
082 0 4 |a 512.73  |2 22 
049 |a UAMI 
100 1 |a Bateman, P. T. 
245 1 0 |a Analytic number theory :  |b an introductory course /  |c Paul T. Bateman, Harold G. Diamond. 
260 |a New Jersey :  |b World Scientific,  |c ©2004. 
300 |a 1 online resource (xiii, 360 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references (pages 353-354) and indexes. 
505 0 |a Cover -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Three problems -- 1.2 Asymmetric distribution of quadratic residues -- 1.3 The prime number theorem -- 1.4 Density of squarefree integers -- 1.5 The Riemann zeta function -- 1.6 Notes -- Chapter 2 Calculus of Arithmetic Functions -- 2.1 Arithmetic functions and convolution -- 2.2 Inverses -- 2.3 Convergence -- 2.4 Exponential mapping -- 2.4.1 The 1 function as an exponential -- 2.4.2 Powers and roots -- 2.5 Multiplicative functions -- 2.6 Notes -- Chapter 3 Summatory Functions -- 3.1 Generalities -- 3.2 Estimate of Q(x) 6x/2 -- 3.3 Riemann-Stieltjes integrals -- 3.4 Riemann-Stieltjes integrators -- 3.4.1 Convolution of integrators -- 3.4.2 Generalization of results on arithmetic functions -- 3.5 Stability -- 3.6 Dirichlets hyperbola method -- 3.7 Notes -- Chapter 4 The Distribution of Prime Numbers -- 4.1 General remarks -- 4.2 The Chebyshev function -- 4.3 Mertens estimates -- 4.4 Convergent sums over primes -- 4.5 A lower estimate for Eulers function -- 4.6 Notes -- Chapter 5 An Elementary Proof of the P.N.T. -- 5.1 Selbergs formula -- 5.1.1 Features of Selbergs formula -- 5.2 Transformation of Selbergs formula -- 5.2.1 Calculus for R -- 5.3 Deduction of the P.N.T. -- 5.4 Propositions 8220;equivalent to the P.N.T. -- 5.5 Some consequences of the P.N.T. -- 5.6 Notes -- Chapter 6 Dirichlet Series and Mellin Transforms -- 6.1 The use of transforms -- 6.2 Euler products -- 6.3 Convergence -- 6.3.1 Abscissa of convergence -- 6.3.2 Abscissa of absolute convergence -- 6.4 Uniform convergence -- 6.5 Analyticity -- 6.5.1 Analytic continuation -- 6.5.2 Continuation of zeta -- 6.5.3 Example of analyticity on = -- 6.6 Uniqueness -- 6.6.1 Identifying an arithmetic function -- 6.7 Operational calculus -- 6.8 Landau's oscillation theorem -- 6.9 Notes -- Chapter 7 Inversion Formulas -- 7.1 The use of inversion formulas -- 7.2 The Wiener-Ikehara theorem -- 7.2.1 Example. Counting product representations -- 7.2.2 An O-estimate -- 7.3 A Wiener-Ikehara proof of the P.N.T. -- 7.4 A generalization of the Wiener-Ikehara theorem -- 7.5 The Perron formula -- 7.6 Proof of the Perron formula -- 7.7 Contour deformation in the Perron formula -- 7.7.1 The Fourier series of the sawtooth function -- 7.7.2 Bounded and uniform convergence -- 7.8 A "smoothed" Perron formula -- 7.9 Example. Estimation of [sigma]T(1₂ * 1₃) -- 7.10 Notes -- Chapter 8 The Riemann Zeta Function -- Chapter 9 Primes in Arithmetic Progressions -- Chapter 10 Applications of characters -- Chapter 11 Oscillation theorems -- Chapter 12 Sieves -- Chapter 13 Application of Sieves -- Appendix A. Results from Analysis and Algebra. 
588 0 |a Print version record. 
520 |a This valuable book focuses on a collection of powerful methods ofanalysis that yield deep number-theoretical estimates. Particularattention is given to counting functions of prime numbers andmultiplicative arithmetic functions. Both real variable ("elementary")and complex variable ("analytic") methods are employed. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Number theory. 
650 0 |a Mathematical analysis. 
650 6 |a Théorie des nombres. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Number theory  |2 fast 
650 7 |a Nombres, Théorie des.  |2 rvm 
700 1 |a Diamond, Harold G.,  |d 1940- 
776 0 8 |i Print version:  |a Bateman, P.T.  |t Analytic number theory.  |d New Jersey : World Scientific, ©2004  |z 9812389385  |z 9812560807  |w (OCoLC)57420268 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129836  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21190547 
938 |a ebrary  |b EBRY  |n ebr10079928 
938 |a EBSCOhost  |b EBSC  |n 129836 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 187225 
938 |a YBP Library Services  |b YANK  |n 2405920 
994 |a 92  |b IZTAP