Cargando…

Data mining : practical machine learning tools and techniques /

As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Witten, I. H. (Ian H.)
Otros Autores: Frank, Eibe
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston, MA : Morgan Kaufman, 2005.
Edición:Second edition.
Colección:Morgan Kaufmann series in data management systems.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004i 4500
001 EBSCO_ocm61400355
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 050901s2005 ne a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d DST  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d EBLCP  |d YDXCP  |d MERUC  |d EUX  |d IDEBK  |d E7B  |d FHM  |d DEBSZ  |d OCLCQ  |d AZK  |d COCUF  |d LVT  |d AGLDB  |d STF  |d MOR  |d PIFAG  |d X#7  |d OCLCQ  |d U3W  |d WRM  |d WCO  |d VTS  |d NRAMU  |d OCLCQ  |d MM9  |d INT  |d VT2  |d OCLCQ  |d AU@  |d OCLCQ  |d G3B  |d C6I  |d IHT  |d SFB  |d OCLCO  |d S2H  |d OCLCQ  |d OCLCO 
019 |a 171114194  |a 174219733  |a 643578308  |a 646825909  |a 647496440  |a 795960895  |a 961592081  |a 962632891  |a 972016060  |a 984814540  |a 988484459  |a 991919873  |a 1037792917  |a 1038563857  |a 1045510038  |a 1051473884  |a 1055374881  |a 1057981042  |a 1081279432  |a 1103255539  |a 1117202489  |a 1125384217  |a 1129334497  |a 1136289195  |a 1288250646 
020 |a 1423722442  |q (electronic bk.) 
020 |a 9781423722441  |q (electronic bk.) 
020 |a 008047702X  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 9780080477022  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 9780120884070 
020 |a 0120884070 
020 |a 9786611008062 
020 |a 6611008063 
020 |z 0120884070  |q (paper) 
029 1 |a AU@  |b 000042125431 
029 1 |a AU@  |b 000043265152 
029 1 |a AU@  |b 000044866914 
029 1 |a AU@  |b 000053013297 
029 1 |a CHNEW  |b 000850352 
029 1 |a DEBBG  |b BV043055455 
029 1 |a DEBSZ  |b 430296762 
029 1 |a DEBSZ  |b 446415316 
029 1 |a NZ1  |b 14539877 
035 |a (OCoLC)61400355  |z (OCoLC)171114194  |z (OCoLC)174219733  |z (OCoLC)643578308  |z (OCoLC)646825909  |z (OCoLC)647496440  |z (OCoLC)795960895  |z (OCoLC)961592081  |z (OCoLC)962632891  |z (OCoLC)972016060  |z (OCoLC)984814540  |z (OCoLC)988484459  |z (OCoLC)991919873  |z (OCoLC)1037792917  |z (OCoLC)1038563857  |z (OCoLC)1045510038  |z (OCoLC)1051473884  |z (OCoLC)1055374881  |z (OCoLC)1057981042  |z (OCoLC)1081279432  |z (OCoLC)1103255539  |z (OCoLC)1117202489  |z (OCoLC)1125384217  |z (OCoLC)1129334497  |z (OCoLC)1136289195  |z (OCoLC)1288250646 
050 4 |a QA76.9.D343  |b W58 2005eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3  |2 22 
084 |a 54.64  |2 bcl 
049 |a UAMI 
100 1 |a Witten, I. H.  |q (Ian H.) 
245 1 0 |a Data mining :  |b practical machine learning tools and techniques /  |c Ian H. Witten, Eibe Frank. 
250 |a Second edition. 
264 1 |a Amsterdam ;  |a Boston, MA :  |b Morgan Kaufman,  |c 2005. 
264 4 |c ©2005 
300 |a 1 online resource (xxxi, 525 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Morgan Kaufmann series in data management systems 
504 |a Includes bibliographical references (pages 485-503) and index. 
588 0 |a Print version record. 
505 0 |a pt. I. Machine learning tools and techniques. What's it all about? -- Input : concepts, instances, and attributes -- Output : knowledge representation -- Algorithms : the basic methods -- Credibility : evaluating what's been learned -- Implementations : real machine learning schemes -- Transformations : engineering the input and output -- Moving on : extensions and applications -- pt. II. The Weka machine learning workbench. Introduction to Weka -- The Explorer -- The Knowledge Flow interface -- The Experimenter -- The command-line interface -- Embedded machine learning -- Writing new learning schemes. 
520 |a As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead there is an identifiable body of practical techniques that can extract useful information from raw data. This book describes these techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights for the new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensiv inforation on neural networks; a new section on Bayesian networks; plus much more. Offering a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques, inside you'll find: Algorithmic methods at the heart of successful data mining -- including tried and true techniques as well as leading edge methods; Performance improvement techniques that work by transforming the input or output; Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization -- in a new, interactive interface. --  |c Back cover. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 1 7 |a Data mining.  |2 gtt 
650 1 7 |a Java (programmeertaal)  |2 gtt 
650 1 7 |a Machine-learning.  |2 gtt 
650 1 7 |a Algoritmen.  |2 gtt 
650 7 |a Descoberta de conhecimento.  |2 larpcal 
650 7 |a Mineração de dados.  |2 larpcal 
700 1 |a Frank, Eibe. 
776 0 8 |i Print version:  |a Witten, I.H. (Ian H.).  |t Data mining.  |b 2nd ed.  |d Amsterdam ; Boston, MA : Morgan Kaufman, 2005  |z 0120884070  |w (DLC) 2005043385  |w (OCoLC)58451668 
830 0 |a Morgan Kaufmann series in data management systems. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130260  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10127947 
938 |a EBSCOhost  |b EBSC  |n 130260 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 100806 
938 |a YBP Library Services  |b YANK  |n 2586044 
938 |a YBP Library Services  |b YANK  |n 2363430 
994 |a 92  |b IZTAP